

Pa
ge
1

CCS-E2X4 - Issue 13 - 9th Sept 2024
Compiled by D. J. Pentecost

SOFTWARE AND SAMPLE PROGRAMS FOR

ELLIOTT 401, 402, 403, 405 COMPUTERS

Elliott-NRDC 401: Pages 2 – 5

Elliott 402: Pages 6 – 8

Elliott 403 (WREDAC): Pages 9 – 15

National-Elliott 405: Pages 16 – 28

Pa
ge
2

Elliott-NRDC 401

The information in this section consists largely of edited versions of much of the contents of a paper
written by D.H. Rees of the Rothamsted Experimental Station (see the references in the final section).

Programming is the art of breaking down a mathematical calculation into a sequence of instructions
which the machine can carry out. A few simple examples will illustrate the process.

Example 1. If numbers x, y and z are held in locations 1.00, 1.10 and 1.20, place x – y in 1.30 and
x + y – 2z in 1.40.

 A0 A2 SFDK A1 R1 R3 R4 R5

 1.127 1.01 6400 1.00 x
 1.01 1.11 6430 1.10 y x
 1.11 1.13 0440 1.12 0 y
 1.13 1.22 6200 1.20 2z
 1.22 1.24 3450 1.23 x 2z
 1.24 1.26 4600 1.25 x-y
 1.26 1.34 3460 1.30 x
 1.34 1.36 4000 1.35 x+y
 1.36 1.38 5600 1.37 x+y-2z
 1.38 –– 0600 1.40

Notes 1. Since R1 is clear before 1.13 is obeyed, the order in 1.13 which gives 2 left shifts produces
0 x 22 + z x 21.

 2. An order such as 1.13 must be programmed first, since both its A1 and A2 are determinate.

 3. Some time is saved by temporarily storing the results in the registers. In a large program,
these might be occupied by other values, in which case a different method might be desirable.

 4. An alternative program, taking more time but fewer orders is as follows:

 R1 R3 R4 R5

 1.01 1.22 6210 1.20 2z
 1.22 1.02 6440 1.00 x 2z
 1.02 1.11 6630 1.10 x-y x
 1.11 1.31 3460 1.30 x
 1.31 1.33 4600 1.32 x-2z
 1.33 1.12 6000 1.10 x+y-2z
 1.12 –– 0060 1.40

Example 2. Form a table of n x 2-31 in 1.00, 1.01, …
 n2 x 2-31 in 3.00, 3.01, …
 n = 0, 1, 2, …
 R1 R3 R4 R5

 5.00 5.02 0400 5.01 0
 5.02 5.04 0040 5.03 0
 5.04 5.11 0050 5.05 0
 ┌→5.11 5.01 5465 3.00 n n2 n
 │ 5.01 5.03 1660 1.00 n+1
 │ 5.03 5.05 5450 5.04 n n+1
 │ 5.05 5.07 5000 5.06 2n+1
 │ 5.07 5.09 4000 5.08 (n+1)2
 └– 5.09 5.11 0045 5.10 (n+1)2

Notes 1. The two write to store orders in 5.11 and 5.01 are R5-modified. Each time the loop of
orders is obeyed, the contents of R5 are added to these orders before they are obeyed, so that the
A1's become successively 1.00, 1.01, 1.02, … It is important to realize that the orders as stored on
the drum are unchanged by this process.

Pa
ge
3

 2. The program must be stopped before n reaches 257, otherwise overwriting will occur in
5.00 and 3.00.

 Nearly all programs are built up of loops of orders as illustrated in example 2. The B-
modification feature enables different numbers to be picked up from or written to the store on each
passage round the loop. It is clearly necessary for the machine to leave the loop sooner or later and
to proceed to the next part of the program. This is achieved by means of a test order, which will lead
the machine to one of two possible subsequent orders according to the result of the test. Frequently
the number of times the loop has to be traversed will be known and a count is kept. Testing the count
enables the machine to leave the loop after the correct number of passages and the count can also
be used for B-modification.

Example 3. A set of numbers is held in locations 2.30, 2.31, …, 2.86. Place their sum in 2.00. It is
assumed that the sum is within the capacity of the machine.

 1.64 1.66 0400 1.65

1.66 1.68 6430 1.67
 ┌→1.68 1.70 1002 1.69 –┐
 │ 1.70 1.72 0044 1.71 │
 │ 1.72 1.73 6400 2.30 │
 │ 1.73 1.75 3000 1.74 │
 └– 1.75 1.68 4430 1.76 │

 1.69 1.71 3400 1.70←┘
 1.71 — 0060 2.00
 1.67 0.00 0000 0.57 ║

Notes 1. The sum is accumulated in R3, which must be cleared at the beginning of the program.

 2. The count number, 57 x 2-31, is put into 1.67 in the form of an order (║ indicates a pseudo-
order). This avoids the use of a special input routine.

 3. The value of the count which is tested is that of the cycle just completed. Hence when the
count reaches zero, the number in 2.30 has been added to the sum and the total is complete.
Counting is normally carried out from the top downwards as in this example.

Example 4. Numbers x and y are held in locations 1.00, 1.01. Place their product, rounded to 31
binary places, in 1.02.

 1.127 1.04 6400 1.00 Pick up x
 1.04 1.06 6436 1.01 x to R3, y to R2
 1.06 1.38 0110 1.07 Form xy
 1.38 — 0060 1.02 and store it

Notes 1. The parity of the addresses (A0; A2, A1) of the double length order in 1.04 may be written
even; even, odd. The rules given in the section on Instruction Sets and Instruction Times then show
that

a. the contents of R1 and R2 are not interchanged
b. the contents of R2 are replaced by the number from the store (S = 6, F = 4); the contents

of R1 (x) go to the destination (R3).

 2. For the multiplication order, A2 – A1 = 31.

(A0 refers to the address of the order in the store, and A2 and A1 are the address fields in the order
itself.)

Example 5. Small integers x and y are held in 1.00, 1.01 in the form x x 2-31, y x 2-31. Place xy x 2-31
in 1.12.

 1.127 1.02 6400 1.00
 1.02 1.04 6436 1.01
 1.04 1.06 0400 1.05
 1.06 1.39 0100 1.08
 1.39 1.46 0306 1.41
 1.46 — 0600 1.12

Pa
ge
4

Notes 1. R1 is cleared before the unrounded multiplication.

 2. The product is shifted 3 places to the right to remove the 3 redundant digits at the least
significant end of R2, and is left in R1. This takes 2 x 3 – 1 word times. A0 and A1 of the shift order
are odd.

Example 6. Replace the contents of 1.00 by its modulus.

 1.127 1.01 6400 1.00
 ┌– 1.01 1.04 0031 1.02
 │ 1.02 1.04 3610 1.03
 └→ 1.04 — 0060 1.00

Example 7. The digits of a 9-figure integer are punched on successive rows of the tape, starting
with the most significant; place this integer x 2-31 in 1.00.

 1.01 1.03 2400 1.02
 1.03 1.05 6430 1.04
 ┌→1.05 1.07 1002 1.06 –┐
 │ 1.07 1.09 3440 1.08 │
 │ 1.09 1.11 0230 1.10 │
 │ 1.11 1.14 3200 1.12 │
 │ 1.14 1.16 2000 1.15 │
 └– 1.16 1.05 4430 1.17 │
 1.06 1.08 3400 1.07←┘
 1.08 — 0060 1.00
 1.04 0.00 0000 0.08 ║

Notes 1. Multiplication by 10 is achieved quickly and simply by the two orders in 1.09 and 1.11.

Programming: Special Devices.
In this section a few tricks of programming are described which are useful in saving space or time.

1. The result of an output order depends on only the last 5 digits of R1. This means that it is seldom
necessary to carry special constants to produce CRLF's or spaces – any order whose A1 ends in the
correct 5 digits can be picked up and sent to output. Such orders should be marked on the
programming sheet to avoid their being altered by later corrections to the program.

Originally the input and output codes were not the same: since the only output was to the typewriter,
this did not matter. (The input code was unchecked binary coding straight into R1 and the output code
a 2-out-of-5 code for digits 0 - 9 + – . sp CR LF.) This was changed in 1956 to a common code for
input and output, with checked and unchecked forms.

To move the paper up 3 lines requires 3 CR LF's and 2 spaces. This may be done in three orders (+
one store location) by storing the following constant –

0.000000 01000 11110 01000 11110 01000
 CR LF sp CR LF sp CR LF

in (say) 1.01 and using a loop such as the following –

 1.00 1.02 6400 1.01
 ┌→1.02 1.08 0320 1.03
 └– 1.08 1.02 0002 —

This will save appreciable space if the spacing is required several times in one program.

2. A simple way of traversing a loop twice is to set 0 ≠ 1's (note: here ≠ means not equivalent) the first
time round and the result (1's) ≠ 1's, producing 0's, the second time and testing for zero. This has the
merit of being self-resetting, provided that the 0 is set initially by the program.

Pa
ge
5

3. All programs should be made self-initializing, the necessary orders being included in the program,
not set by pseudo-orders on the program tape; This applies to counts, etc. and any orders that may
be changed by the program. The program can then be restarted after an untoward incident without
feeding in the whole program tape again.

4. Using the initial orders on Track 0 of the store, facilities for reading orders from tape and storing
them are always readily available. The easiest way of inserting a few simple constants is therefore to
present them in the form of orders. Examples of this have been given above in examples 3 and 7. To
convert a positive decimal fraction to a pseudo-order, multiply the fraction successively by 4, 128, 8,
8, 8, 8, 8, 128, each time recording and clearing the integral part. An analogous division process is
used to convert integers.

5. When coding a problem, the SFDK's of the order should be written first, with arrows to show the
path of the computation and information regarding quantities sent to or from the store, amount of
shifts, etc. The addresses can be filled in later as a separate operation. During this second stage,
most attention should be paid to the innermost loops of orders, which will encountered the largest
number of times. These should be programmed first.

Programming: Track 0.

Track 0 differs from the other tracks in having no writing facilities. The information on it is thus
permanent and cannot be inadvertently destroyed by over-writing. The most important part of the
information is the Initial Orders. These make up a program that reads in a tape punched with orders
and places these orders in the correct positions in the store. This routine has a checking facility: as
each order is read in to the store, it is read back and checked against the version which has been
constructed from the tape. If desired, the writing can be inhibited by setting the A2 of the hand
switches to 0.01, in which case the machine will check the input tape against the pre-existing contents
of the store.

The remainder of Track 0 contains certain frequently used subroutines which are described below.

A subroutine is a standard routine that may be used in many different programs or perhaps several
times in different parts of the same program. It must therefore be able to direct control to different
places each time it is used. This is achieved by providing it with a link order, which is the first order to
be obeyed after the orders of the subroutine have been completed. This link order is placed by the
subroutine in a certain location and control is finally directed to this location. Information about picking
up the link order is always given in the specification of a subroutine.

The Routines of Track 0.

There are four programs permanently available on Track 0, of which two are organized as
subroutines.

1. Initial Orders and Post-mortem routine. Start at 0.00 or (with R1 = 0) at 0.22.

2. Division. Enter at 0.112, with x in R3, y in R4, link in R1.
 Forms x/y in R1.

3. Print fraction. Enter at 0.52 or 0.53. Prints the fraction x to n digits, rounded off, where x is in R3,
n x 2-31 in R4, and link in R1. Negative numbers are preceded by – sign, positive numbers by a space
or CR LF. Entry at 0.52 causes the number to be preceded by a space; entry at 0.53 causes the
number to be preceded by a CR LF.

4. Insert or remove Optional Stops. Start at 0.01, with the A0 of the appropriate order set as A1 on
the hand switches. The routine sets the K-digit of the order ≠ 7 (not-equivalent) and returns control to
0.01, which is a stop order, so that the hand switches can be changed in order to modify another
order if required.

Pa
ge
6

Elliott 402

There is an example of a 402 machine code program, for calculating a square root, set out in Note 8
(pages 37 to 39) of the 402 programming manual which is reproduced in the section on Instruction
Sets and Instruction Times. No other examples of application machine coding have come to light. But
a version of the Initial Orders coding is shown as photographs of an extract from a 402 programming
manual; this program is on the last ten pages of the 402 part of the section on Instruction Sets and
Instruction Times.

However, a two page note has been found in the London Science Museum, under reference
681.32.ELL 402, received 26th June 1978, produced by the Scientific Computing Division of Elliott
Brothers (London) Limited, dated 18th March 1958, under reference L134.. This note was produced
for the 1958 Physical Society Exhibition. The version below has been carefully re-typed from a
scanned photocopy.

It shows examples of the kind of work for which the 402F was being sold to undertake, and although
no machine code is listed, there is a fragment of Autocode illustrated, on the second page.

DJP 8th Jan 2011

Pa
ge
7

 L.134

 1958 PHYSICAL SOCIETY EXHIBITION

 Demonstration of the

 ELLIOTT 402F (FLOATING POINT) DIGITAL COMPUTER

 This machine, the latest extension of the well-known Elliott
“400” series, consists of a 402E (fixed point) computer with three
extra cabinets, and can work under program control in either fixed or
floating-point modes.

 The machine is demonstrated in four typical application:

 (i) Solution of n simultaneous equations ax = b with n right-
 hand sides, using minimum storage space

 (ii) A linear programming problem

 (iii) Multiple regression analysis

 (iv) Simple autocode programming

Solution of n simultaneous equations ax = b with n right-hand sides,
 using minimum storage space

 The elements of the combined matrix (a,b) are read in, a row at a
time; when the (r + 1)th row is read the rows 1,2, r have been
reduced to the form Mr ≡ (dr, ar, br) where dr is a diagonal r x r submatrix
and ar, br are submatrices with r rows and n-m, m columns respectively.
By subtracting suitable multiples of rows, the matrix (Mr + 1) is then
built up. If zero elements are not stored the maximum number of locations
required to store M1 is ½ n(½ n + m + 1) ≠ ¼ n2 which occurs when r = ½ n.

Without using floating point working at least ½ n2 locations are required
for storage. The program consists of approximately 120 orders excluding
input and output subroutines.

Linear Programming

 Linear Programming is a method of maximising a linear function of
several variables which are subjected to a number of constraints expressed
as a set of linear inequalities.

Example
 Maximise f = 4x1 – 3x2 + 40x3 + 10x4

 where x1 + 11x3 + x4 ≤ 37

 x2 + 3x3 = 29

 x3 + x4 ≤ 9

Solution
 f = 115

 x1 = 28, x2 = 29, x3 = 0, x4 = 9

 The routines being demonstrated use the Simplex Method and can
deal with 61 equations with 61 non-basic variables.
 /Over

Pa
ge
8

Multiple Regression

 Given a matrix of variances and covariances, the program will produce
regression coefficients of any selected variate or any other selected
variates, together with sums of squares and degrees of freedom required
for an analysis of variance. At any stage a variate so far included
may be removed from the regression equation. The program is controlled
entirely from the hand keys.

 Similar programs written for a fixed point machine would require
checks on capacity at about ten different points, and should capacity be
exceeded at any stage of these points it would be necessary to rescale the
data or intermediate values and restart the program from the beginning.

Simple Autocode

 The Simple Autocode program will read in a tape consisting of
“algebraic orders” and produce an equivalent program in machine orders
which can then be read into the machine and obeyed.

 In order that the present teleprinter codes might be used the
following conventions have been adopted:

 * is used for ‘mutiply’
 / is used for ‘divide’
) is used for ‘greater than’
 (is used for ‘less than’

 In a long arithmetic order like that marked ’1 below, the functions
are performed in the order in which they occur, as can be seen from the
explanation on the right.

 An example is given below of a sequence of orders which might be
required:

Specimen Set of Orders

 Order Explanation

 I, A Input the number A

 352.79 (X + A)
‘1 Z = X + A * 352.79/B – 4.6 (1) Form Z = B - 4.6

 P, Z 0’ Print Z (print routine no: 0)

 A = F 5 (A) Replace A by f5(A) (where
 f5 is probably a library
 subroutine, e.g. logarithms or
 sine).
 T, A) 0.1 @† 1 If A > 0.1 return to line (2)

 S, Otherwise stop.

Scientific Computing Division
ELLIOTT BROTHERS (LONDON) LIMITED

Elstree Way, Borehamwood, Hertfordshire.
ELStree 2040

18.3.58. Printed in England

† (This character is unclear on the copy of the document, and may not be an @ sign)

Pa
ge
9

Elliott 403 - WREDAC
[Compiled from various sources by D.J.Pentecost]

The program on this and the following six pages appears to be a library program, and was written at
the Weapons Research Establishment, Salisbury, South Australia. It was started in November 1961,
and published on 15th January 1962. It was Alex Reid's first program, and has been taken from his
website, which at the time of writing (April 2006) was at
https://web.archive.org/web/20120320062103/www.general.uwa.edu.au/u/alex/Welcome-5.html
He has kindly given permission for the program to be reproduced here. Because of the difficulty of
copying and re-publishing what appears to be a scanned photocopy on Mr. Reid's website, much of
the program specification has been carefully re-typed and checked, and is reproduced below in its
original format.

UNCLASSIFIED

WEAPONS RESEARCH ESTABLISHMENT
MATHEMATICAL SERVICES GROUP

WREDAC PROGRAMME SPECIFICATION

A

REFERENCE : G 11.1.1

TITLE : Transposition of signs on paper tapes

AUTHOR : T.A.Reid VETTED : B.Biggins

DATE : 15/1/62 APPROVED : P.N.L.GODDARD

PURPOSE : In the three columns of numbers output on paper tape

 from Boscar film readers the second and third are

 followed by signs. This programme transposes the

 signs to the front of the numbers so that the tapes can

 be used on the Libroscope plotter. The telereader is

 able to punch the sign either before or after the

 number, but it is customarily placed after the number,

 for use in IG.1.22.

RESULTS : Output is of the same form as the input data, i.e. it

 consists of three columns of four figure numbers, the

 second and third columns having signs in front of them.

 (See B)

WR 18673

Pa
ge
10

-2-

UNCLASSIFIED
WREDAC PROGRAMME SPECIFICATION

REFERENCE : G 11.1.1

B

DATA REQUIREMENTS : The first character of the data tape may or

 may not be a β; data should then be punched

 in the sequence :

 xxxxβxxxx±βxxxx±βγβ....

 or xxxxβxxxx±βxxxx±βγ....

 or xxxxβxxxx±βxxxx±γβ....

 or xxxxβxxxx±βxxxx±γ....

 and should end with γz or γβz.

WR 18673

Pa
ge
11

-3-
UNCLASSIFIED

WREDAC PROGRAMME SPECIFICATION

REFERENCE : G 11.1.1

C

METHOD : (i) Input and output of blank tape at the beginning of the data
 tape is carried out until the first non-blank character is
 read, when it is punched. If this is β the next character
 will also be punched.

 (ii) The next three digits and the following β are input and punched.

 (iii) The following four digits and sign are input and stored.

 (iv) The sign is punched

 (v) The four digits in storage are punched

 (vi) The next character is input and tested : if the data
 sequence has been upset and this is not β a dynamic stop
 occurs. If it is β, it is punched.

 (vii) The next four digits and sign are input and stored.

 (viii) The sign is punched.

 (ix) The four digits in storage are punched.

 (x) The following β's and γ are input and punched.

STORAGE DISTRIBUTION :

 (i) B-lines used : B-line 1 is used.

 (ii) High Speed Store

 from 1/0 to 1/30 Master routine

 from 1/60 to 2/0 Working locations

DATA STORAGE DETAILS : Data is not stored but is output immediately it
 has been input.

WR 18673

Pa
ge
12

-4-

UNCLASSIFIED
WREDAC PROGRAMME SPECIFICATION

FLOW CHART. REFERENCE : G 11.1.1

WR 18673

Pa
ge
13

-5-

UNCLASSIFIED
WREDAC PROGRAMME SPECIFICATION

REFERENCE : G 11.1.1

PROGRAMME TAPE ASSEMBLY :

QA 64 Φ

Master routine

QC Φ │ GE 64 α

WR 18673

Pa
ge
14

-6-

UNCLASSIFIED
WREDAC PROGRAMME SPECIFICATION

REFERENCE : G 11.1.1

D

INPUT/OUTPUT EQUIPMENT :
 1 paper tape reader
 1 paper tape punch

OPERATING TIME : 44 characters and read and output per second
 i.e. 138 lines are processed a minute.

OPERATING INSTRUCTIONS :

 (i) Setting up : none
 (ii) Programme and Data Feed:
 Read in programme to
 OPSTOP 1 : Insert data tape and single shot.
 Results are output as fast as data is input.

 COMPUTATION ENDS ON GE 1/15 α

 RESET TO OPSTOP 1 by obeying: GE 1/1 α.

 (iii) Output :
 The output tape is of exactly the same form as the data tape
 but with the two signs transposed into the positions as shown:

 xxxxβ±xxxxβ±xxxxβγβ....

 (iv) Programmed Halts :

Order
Register

Sequence
Control

 Cause and remedy

OPTIONAL STOPS :
 CH α

DYNAMIC STOPS :
 GE 1/15 α

1/0

1/15

OPSTOP 1 as above

(a) if end of data tape :
 end of computation.

(b) if not end of data tape :
 sequence of data characters
 has been upset: move data
 tape to next γ and obey
 GE 1/22 α.

WR 18673

Pa
ge
15

-7-
UNCLASSIFIED

WRE DIGITAL COMPUTER
PROGRAMME SHEET

REFERENCE : G 11.1.1

 TITLE : Transposition of signs on paper tape

WR 18673

Pa
ge
16

National-Elliott 405
[Compiled by D.J.Pentecost]

Below is a copy of the standard 405 program flowcharting template in use in the early 1960s.

1. Automatic Timing Routine

An important consideration for computers of this generation was to optimise the coding of critical parts
of programs. For example, batch processes, such as large payrolls and stock control, involving data
held on several reels of magnetic tape, could take several hours to run. So an hour saved by efficient
coding was a bonus well worth achieving, for computer time was often at a premium, with jobs being
tightly scheduled and competing with each other for access to the computer.

Another consideration was the fact that computer breakdowns occurred not infrequently, so if the time
taken to run a job could be minimised, there was a greater chance that it could be completed before
the next breakdown occurred.

So programmers sometimes needed a tool to measure how long a critical part of a program was
taking to run, in order if necessary to re-code it to reduce run time. Elliotts provided for this purpose a
library program, known as the Automatic Timing Routine, or 405 PT 02.

This timing routine is set out below as a re-typed copy of an original specification document followed
by photo-copies of the two original program sheets, (both now in the London Science Museum), a
printout resulting from passing the paper tape of the program through a tape reader and printer, and
for the sake of completeness, to show all the principal forms of a program, a copy of the unrolled reel
of paper tape holding the program.

Apart from its academic interest, the program illustrates the use of the following 0-code orders: 0, 1, 2,
3, 4, 6, 8, 9, 10 and 11.

Pa
ge
17

 ELLIOTT BROTHERS (LONDON) LTD. LIBRARY ROUTINE

Copy No. Computing Services Division 405 PT 02/DJP

National-Elliott 405 Program Library

__

AUT0MATIC TIMING ROUTINE

1. DESCRIPTION

 To measure in word times the time taken by any program which
 does not obey an output compiler order; the program may take a
 time ranging from milliseconds to hours.

2. DEFINITION

 The program being timed is referred to as P.

3. COMPUTER REQUIREMENTS

 6-bit output line assembler
 Immediate access locations 16 to 31

4. LOCATIONS USED

 I.a.s. 1, 193 to 253 and 511.

5. VARIANT ROUTINES

 If the computer has a 5-bit output line assembler, the
 routine must be amended thus: 217) 113'0/7,5'480.

 If locations 16 to 31 are not i.a.s.'s change the order
 pair in 247 to 9'228,2'253.

6. METHOD OF USE

 The program consists of two subroutines, which "start the
 clock" and "Tell the time". (Hereafter referred to as S-R(i)
 and S-R(ii) respectively).

 The procedure is for the user to estimate the maximum possible
 time taken by P, enter S-R(i), obey P and finally enter S-R(ii).

 In order to function, S-R(ii) requires three values which are
 placed in it by S-R(i). Therefore if P uses locations 193 to 253,
 the routine must be stored away, either elsewhere in the working
 store or on the disc, after obeying S-R(i), and of course be restored
 to 193 to 253 before entering S-R(ii). It should be noted that the
 instructions required to achieve this occur after S-R(i), and before
 S-R(ii), and are taken by the routine to be a part of P; thus their
 time will be included in the result.

N.B. Before reading in the tape, the sector to contain the routine must
 be in location 400 at scale 2-24 (collated).
 405 PT 02/DJP
 Sheet 1 of 5

Pa
ge
18

(a) S-R(i)

 Parameter: Before entering S-R(i), the user must place in
 location 195 an estimated maximum time taken by P (in word
 times) at scale 2-31 (Tmax). This value, once placed, remains
 in 195, and may therefore be used if required for timing
 several programs. Tmax must be > T, where T is the exact time of
 P in word times.

 Entry is into location 193:

 x) 171'0,8'193
 x+1) f'n,

 f'n, is the first instruction of the program being timed.

 Exit is normal; ,8'0/1.

(b) S-R(ii)

 Entry is into location 194:

 y-1) ,F'N
 y) 171'0,8'194

 ,F'N is the last instruction of P.

 Exit is normal: ,8'0/1.

 T, the time measured, is in both the accumulator and location
 196 at scale 2-31 on exit.

7. THE TIME MEASURED

 x) 171'0,8'193 Enter S-R(i)
 x+1) f'n, . .
 Program to be timed
 y-1) . . . ,F'N
 y} 171'0,8'194 Enter S-R(ii)

 The time measured is that from coincidence with x+1) until
 coincidence with y).

 Care must be taken when assessing the time measured, if P
 contains film, disc or input orders. (Not output: see note 10(a)).
 Suppose that f'n, is a disc order. If shortly before entering S-R(i),
 another disc order had been obeyed, and there had been no following
 delaying order referring to this disc order, although the time measured
 is still that from x+1) to y), this time includes that due to the
 delaying action of the first disc order on f'n, the second disc order.
 A similar effect occurs if ,F'N is a 120' disc order; it is clear that
 the total time for this order will not be measured; but a 121' order
 (which would necessarily read S-R(ii) to the working store) will be
 measured.

405 PT 02/DJP
Sheet 2 of 5

Pa
ge
19

 The range of time measurable is from zero to approximately
 232 word times.

 Provided that location y) is not an i.a.s., the time
 measured will be correct; but if it is an i.a.s., the time
 measured may not be correct, since the routine assumes that
 │y)│16 is the true word time of y), which is not necessarily
 so. In this case the true time of P is given by the expression

 T + C2 - 8 x │C2│ - K + 8 x │K│
 C2 K
 where T = time of P given by the computer
 C2= │13 x link of S-R(ii)│16 - 10

 K = │13 x[true word time of y)+1]│16 - 10
 and for any quantity Q, when Q = 0, │Q│ = 1.
 Q
8. TIME TAKEN BY S-R(i)

 x} 171'0,8'193
 x+1) f'n, . . .

 The time taken is that from coincidence with x) until coincidence
 with x+1). 66 word times is the time taken, excluding the times for
 coincidence of the entry and exit orders, 8'193 and ,8'0/1. Clearly
 the total time depends upon the times for these two orders, which in
 turn depend upon whether locations x) and x+1) are i.a.s.'s. If they
 are not i.a.s.'s, the time for the two ,8' orders is invariably 17
 word times, making the total time 83 word times.

9. TIME TAKEN BY S-R(ii)

 y-1} . . . ,F'N
 y) 171'0,8'194
 y+1)

 The time taken is that from coincidence with y) until coincidence
 with y+1)

 (a) Provided that Tmax is not too small, the time taken in word
 times is:-
 Tmax - │Tmax│16 - T - C1 - C2 + 8│C1│ - 8 │C2│ + 295,
 C1 C2
 if location x+1) is not an i.a.s. If location x+1) is an i.a.s.,
 the time is 48 word times less.

 C1 = │13 x link of S-R(i)│16 - 4

 These times are exclusive of the times taken for coincidence of the
 entry and exit orders ,8'194 and ,8'0/1, which invariably total 17
 word times if locations y) and y+1) are not i.a.s.'s.

 (b) If Tmax is too small (see note 10(b)), 130 word times is the
 time taken, exclusive of coincidence times for the entry and
 exit orders.

405 PT 02/DJP
Sheet 3 of 5

Pa
ge
20

10. RESTRICTIONS

 (a) The routine cannot be used to time a program which
 uses the output compiler or the output line assembler.

 (b) If Tmax is too small, T, the result given, is equal
 to Tmax. The copy of the result, c(196), also = Tmax.

 (c) Location 511 should preferably not be used. If its
 use is essential, it must be cleared before entering
 S-R(ii). If it is not cleared, and Tmax is not too small,
 the routine assumes that Tmax is too small, and note
 10(b) applies. If 511 is used and is not cleared before
 entry to S-R(ii), and further, Tmax is too small, the
 computer loops the instructions in locations 201 to
 204 indefinitely; should this happen, depress the step
 key and transfer control to location 207; this sets T = Tmax,
 as in note 10(b).

11. CONTENTS OF LOCATIONS AND REGISTERS

 Entry Exit

 S-R(i)

 *195: Tmax.2-31

 195: Tmax.2-31

 511: zero

 K-reg: 1.2-31

 S-R(ii)

 195: Tmax.2-31

 511: zero

 K-reg: 1.2-31

 Acc: T.2-31

 196: T.2-31

 195: Tmax.2-31

 K-reg: 1.2-31

 *To be set by the user

 Single length multiplication is set by S-R(ii).

12. USEFUL CONSTANTS AVAILABLE

 c(222) = c(232) = 1.2-31

 c(197) = 0
 c(226) = 1.2-31

 c(233) = 10.2-31

 c(252) = 16.2-12

405 PT 02/DJP
Sheet 4 of 5

Pa
ge
21

13. TECHNIQUE USED

 Provided that the program to be timed does not use
 the output compiler or the output line assembler, output
 via the assembler may take place simultaneously with
 the program.

 Suppose that just prior to obeying the program,
 output of a number N.2-31 is started via the line
 assembler. If the K register is set at 1.2-31, the time
 taken for output is (N+n) word times, where n is a small
 calculable correction. Provided that (N+n) > T, where T
 is the time taken by the program, then the program will be
 obeyed before outputting is completed.

 Let (N+n) - T = T1, i.e. T = (N+n) - T1.

 If N is known and T1 can be measured, it follows that T
 can be calculated.

 Thus the problem of timing the program reduces to
 that of measuring T1, the excess time of outputting
 over the time taken by the program. By setting the
 combined count appropriately, it can be arranged that the
 number output will be placed in location 511; so if
 a loop is entered immediately after the program has been
 obeyed, which both counts the number of times it is
 cycled and examines c(511), T1 may be calculated, for if
 each cycle takes w word times, and the number of times
 cycled before 511 is filled is p, then T1 = pw word times.
 (In fact pw will be slightly larger than T1, since the new
 c(511) will be examined a small interval after it is output,
 but the difference is calculable, for the exact outputting
 time is known).

 Apart from the calculations and corrections mentioned
 above, two more adjustments are necessary in order to find
 T exactly. Clearly, since outputting is started in S-R(i),
 the time measured depends upon the time taken for exit from
 this subroutine; it also depends upon the time taken for
 entry into S-R(ii). These times are accounted for by examination
 of the two links; the links are also examined to see if i.a.s.'s
 are involved, in which case further corrections are applied.

14. OPERATING NOTE

 Immediately after P has been obeyed, and whilst T1 is being
 measured, a high-pitched note is emitted from the loud speaker;
 note that this is not a dynamic stop, and that a count may be
 seen to be increasing in both the accumulator and in i.a.s. 1;
 the note is emitted for approximately the difference in time
 between Tmax and the time taken by P.

 D.J. Pentecost, 405 PT 02/DJP

Sheet 5 of 5

Pa
ge
22

Pa
ge
23

Pa
ge
24

192/400:@
*405 PT 02/DJP
8'/3,400:
11'1,8'210
11'1,8'200
0
8'/3,400:4
0
11'1,3'220
9'245,8'207
10'227,11'222
10'1,11'511
3'197,9'198
11'1,'225
8'201,
32
8'/3,400:14
11'195,8'242
,13'
15
10'221,11'232
113'/3,4'
10'511,8'213
11'195,8'214
1'209,8'215
1'226,3'205
'195,10'206
113'/7,4'480
11'206,8'219
114'1/3,8'/1
4
8'/3,400:29
1
'225,8'241
8'/3,400:32
16
-1
8'/3,400:35
11'221,8'229
172',6'234
1'209,2'220
9'235,8'237
1
10
,3'
'225,8'237
172',8'/1
'1,10'1
11'227,8'239
6'208,1'209
2'233,9'223
'1,3'206
10'196,11'227
10'1,11'196
8'236,
11'221,3'251
9'228,2'252
9'249,2'253
9'228,8'249
4',8'237
8'/3,400:58
'31,
'16,
'12,
8'/3,400:62
8'/3,400:63
)

Above, on the previous two pages, is a copy of the programmer's original
program sheet.

To the left of this note is its printed representation after being punched on to
paper tape, and below on the following page is a copy of the paper tape
itself.

The original program sheet above is functionally accurate, and as far as was
known, contained no errors.

When the program was produced on paper tape for distribution to potential
users, some additions were made, compared with the hand-written original
version, in order to conform to some programming standards which were
introduced at a later date.

These were:-

1) To insert the dynamic stop instruction 8'/3, into words to which control
should (all being well) never be passed, and

2) Into the right hand side of such words also to place the address of the
word containing the dynamic stop instruction, in order to assist the operator
to determine where the error had occurred, should the dynamic stop ever be
obeyed. (This was achieved by using the device "400:", which added the
contents of location 400 to the value following the colon, where location 400
was previously set up to hold the address in working store of the first word of
the program, as it was loaded into the computer.

The above accounts for the minor differences between the hand-written
version of the program above, and its other two paper tape representations
shown here and below.

Pa
ge
25

2. Disc Sector 0 routines

On the following two pages is a listing of the two standard paper tape input routines held on sector 0
of the 405 disc, known as FIR (Fast Input Routine), and FGP100, which allowed programs recorded
on paper tape to be input to the computer.

(No specification or description has been found)

Pa
ge
26

National-Elliott 405 - Disc Sector 0: FGP100 and Fast Input Routine
Interpreted by H. R. Lawrence, 12th May 2006

128/0@

Common ENTRY to FGP100 and Fast Input Routine (FIR)
129 → 128:: 11'l64 ,107' 0 Form input character -1 in accumulator
 129:: 9'128 ,107' 0 If blank then loop to ignore; else add next input char
 130:: 2'184 , 8'167 Subtract 50.2^(-31); go to decide if FGP100 entry

Directory set-up
145 → 131:: 11' 3 , 5' 16 Shift directory address from LS half to MS half
 132:: 5' 3 , 10' 2 Shift WS directory address to 2^(-12) and store
143 → 133:: 11'159 , 10' 1 Count -5.2^(-12) for selecting appropriate shift
 134:: 4' 0 , 10'160 Clear word assembly store
154 → 135:: 4' 0 , 10' 3 Clear number assembly store
158,183→136:: 4' 0 ,107' 0 Input next character to accumulator
 137:: 2'161 , 9'139 Subtract 31.2^(-31); if not 'ls' go to 139
'ls' 138:: 11' 0/3 , 7'511/2 If 'ls' then trigger: Jump to last location assembled
 with accumulator holding 11’0/3,7'511/2. Note the
 '7' instruction is actually obeyed as '8' (jump) and
 the address becomes the contents of IAS2 less 1.

137 → 139:: 0'162 , 9'144 Add 2.2^(-31); if not 'cr' or 'lf' go to 144

'cr'/'lf' 140:: 11' 3 , 0'160 Add last number assembled to word assembled
 141:: 10' 0/2, 11' 2 Store in next store location: Update store location...
 142:: 0'163 , 10' 2 ... pointer by adding 1.2^(-12) to IAS2
 143:: 107' 0 , 8'133 Ignore 'lf' and loop back to start next word

139 → 144:: 2'164 , 9'155 If not 'sp' go to continue assembling current number
'sp' 145:: 2' 1 , 9'131 If only directory address input so far, go to set it up
 146:: 11'160 , 0' 3 Add assembled number to so far assembled word
 147:: 8'153/1, 0' 0 Jump to decode shift-table below

 148:: 5' 9 , 8'154 SHIFT
 149:: 5' 3 , 8'154 JUMP-TABLE
 150:: 5' 4 , 8'154 TO PLACE
 151:: 5' 9 , 8'154 PARTS OF
 152:: 5' 3 , 8'154 A WORD
 153:: 8'153 , 0' 0 Dynamic stop: too many spaces this line

148-152 entry: Assemble decimal number
 154:: 10'160 , 12'135
144 → 155:: 0'165 , 1'166 Add 28 and collate 15.2^(-31) to obtain digit
 156:: 10' 3 , 4' 10 Add this to 10 times assembled # so far
 157:: 0' 3 , 10' 3 ...and store back in IAS3 thus compiling decimal #
 158:: 8'136 , 0' 0 Loop back for next digit or end of number

Constants and workspace
 159:: 432=496 , 0' 0 -5.2^(-12)
 160:: (0' 0 , 0' 0) Stores word as it is being assembled
 161:: 0' 0 ,171' 0 31.2^(-31) ('ls' in telecode)
 162:: 0' 0 , 0' 0/1 2.2^(-31)
 163:: 0' 1 , 0' 0 1.2^(-12)
 164:: 177'511 ,177'511 -1.2^(-31)
 165:: 0' 0 , 0' 3/2 28.2^(-31) ('sp' in telecode)
 166:: 0' 0 ,170' 0 15.2^(-31) (collate constant to extract digit value)

Select program FGP100 or FIP:
130 → 167:: 10' 1 , 11' 1 Copy to IAS1 the sum of the first two chars -51.2^(-31).
 168:: 12'182 ,103' 11 If first 2 chars not “'fs'@“ run FGP100; else start
 FIR here: Input store directory address to IAR.
FIR 169:: 102' 2 , 10' 1 Skip 'cr' & 'lf' and store current directory

location address in IAS1.
 170:: 11' 1 , 10' 2 Prime input total in IAS2. with directory address

Pa
ge
27

Next line:
175 → 171:: 102' 1 ,103' 11 Input 1 telecode character to accumulator

and input next location or trigger value to IAR.
 172:: 3'185 , 9'176 Negate & add 6.2^-(31). If negative then not "*"

so “(“ assumed (trigger).
* 173:: 102' 2 , 10' 2 Next location value from IAR and skip “'cr' 'lf'"
 174:: 0' 2 , 10' 2 Accumulate sum-check total in IAS2.
 175:: 10' 0/1, 12'171 Store next location value, increase location address
 pointer and loop back for next line unless end of store.
Trigger:
172 → 176:: 102' 3 , 10' 2 Skip “'cr' 'lf' =” and
 177:: 0' 2 , 10' 2 ...add trigger to accumulated sum-check in IAS2
 178:: 10' 3 ,103' 11 Place trigger in IAS3 and input sum-check to IAR
 179:: 102' 2 , 2' 2 Ignore “'cr' 'lf'” and form input sum-check
 minus accumulated sum
 180:: 10' 1 , 0' 0 Store sum-check difference in IAS1
 181:: 12'186 , 8' 3 Obey trigger, unless sum-check error

Here starts FGP100:
168 → 182:: 0'191 , 1'166 Sum of the first two chars -27.2^(-31) masked
 183:: 10' 3 , 8'136 Store first digit of WS directory in IAS3 and loop

Two more constants
 184:: 0' 0 , 0' 6/1 50.2^(-31)
 185:: 0' 0 , 0' 0/3 6.2^(-31) or telecode "="

Sum-check error:
181 → 186:: 110' 63 ,110' 61 Output “'ls' 'cr'”
 187:: 110' 62 ,110' 37 Output “'lf' E"
 188:: 110' 50 ,110' 50 Output "R R"
 189:: 110' 47 ,110' 50 Output "O R"
 190:: 110' 27 ,110' 4 Output “'fs' 4"
 191:: 8'191 , 0' 3 Dynamic stop. Also used in 182 as 24.2^(-31) by
 collating out 8'191
Meaning of abbreviations used:
Chars: 'fs' = figure shift; 'ls' = letter shift; 'sp' = space;
 'cr' = carriage return; 'lf' = line feed

IAR = input assembly register; ACC = accumulator; IASn = immediate access register n=1,2,3
t/c = telecode; LS = least significant half of word (digits 2^(-16) to 2^(-31))
MS = most significant half of word (digits 2^0 to 2^(-15)); WS = Working Store
Note: A trigger is an instruction or instruction-pair, the contents of a single word, to be acted on in order to set off
a program process once the coding has been read into the computer.

5-bit Elliott telecode values used:

char

 binary
telecode

decimal
 value

digit

 binary
telecode

decimal
 value

 alpha
char

binary
telecode

decimal
 value

*
=
(

@
'fs'
'sp'
'cr'
'lf'
'ls'

00011
00110
10001
11000
11011
11100
11101
11110
11111

3
6

17
24
27
28
29
30
31

0
1
2
3
4
5
6
7
8
9

10000
00001
00010
10011
00100
10101
10110
00111
01000
11001

16
1
2

19
4

21
22
7
8

25

E
R
O

00101
10010
01111

5

18
15

Each program line consists of a left column (in green) giving either the numeric address from which this location
is reached, if not sequential, or the function or state operated on by the program at this point. This is followed by
the store address (in red) and then the two instruction word. After that there is some explanation of what is being
done here.

Pa
ge
28

Ed: In the two pages above, Harry Lawrence found two anomalies in these basic standard library routines, whilst
documenting the coding. It is remarkable how after over half a century, errors have come to light, which
fortunately in these cases seem not to have mattered.

He reported:-

1. "I have completed the Fast Input Routine now but found that one of the values was incorrectly set!
Well it still works, but is irrational as it doesn't deal precisely with the situation and must have been an
error when originally written. It is the 7th line from the end which reads:

0' 0 , 0' 0/3 but should read:
0' 0 , 110' 0/1.

It is trying to distinguish between a telecode "*" value 3 and a telecode "(" value 17.

The setting of 6 for comparison had me fooled for a while for that would be what is wanted to separate
out both "*" and "=" from "(" which seems reasonable since "=" starts a sum-check line, but the order
of lines is absolutely fixed and the whole thing would fail if a sum check line preceded the trigger line.

So the value to check against really is 3 and not 6 as noted above, but as I said, it still happens to
work.

I checked to see if the constant 6 was used anywhere else, but it isn't, so it was just an error as the
programmer obviously meant 3 and wrote 3, but it was punched in the right hand B-line position in
error.

If you remember the TIs, and the form we used when coding, we would indicate when a number was
simply to be punched on a line without punctuation by a vertical line on the left, just where the first
function might have been. Well if it was left off or else missed by the punch-girl, then the result could
be a 3 in the B-line position, and that translates to 6.2^-31".

2. "I think that the second instruction in line 180 is a mistake by the originator! I would have
substituted "4'0" for the "0'0" written there, as that would enter the trigger with a clear accumulator
instead of some meaningless indeterminate number that is based on the value of the number-
generator at the time. However I thought that again I shouldn't fudge history by making a correction".

