
 1

Version 2, November 2011 E6X3

Instruction sets and instruction times for the Elliott 4100 Series computers.

General considerations.
The Elliott 4100 series’ 24-bit word employed two’s complement representation for integers.
Single-address format instructions were either short (12 bits) or long (24 bits). In the context of
the early 1960s, the instruction set contained a rich variety of orders with due consideration
being given to the needs of compiler writers for block-structured languages such as Algol.

Short instructions have six function-bits (ie the op code) and six address bits, thus only giving
access to the first 64 memory locations for operands.

Short format instructions:

6 6
F N

Op code Address

For short instructions, the octal value of the F-bits lies in the range 00 to 37. Almost all of the
32 short instructions are duplicated by long instructions that offer richer addressing modes.
Thus, short instruction op codes 00 to 27 generally have the same arithmetical or logical
definitions as long instructions that have op codes in the range 40 to 67 – (see the lists given
below).

The layout of long, 24-bit, instructions is as follows:

Long format instructions:

6 2 1 15
F Y Z N

Op code Addressing
mode

Extracode
indicator

Literal or
address

For long instructions, the octal value of the F-bits lies in the range 40 to 77. The values of the
Y-bits denote the addressing mode, as follows:

0: literal (N is treated as a positive integer – ie, not signed)
1: direct (N is an absolute address)
2: modified (the contents of R is added to N to give the final address)
3: indirect (the contents of memory location N gives the address of the
 operand).

When using modified or indirect addressing, bits 16 – 22 of the final address must be zero.
This gives the effect of being able to address a maximum of 256K words, in blocks of 64K
words.

 2

The Elliott 4100 series has the following programmer-accessible registers (see below). When
describing digit-positions, the 4100 convention is that bit 24 is the left-hand (most-significant)
position and bit 1 is the least-significant position.

 size, description
 bits
M 24 main accumulator
R 24 reserve accumulator, also used as the address-modification register, etc.
S 17 program-counter, also known as the sequence-control register
K 12 count register
C 14 conditions register. Bits 16 – 7 are unallocated. The remaining C bits

 are assigned as follows (according to an amalgamation of the information
 contained in [1 and 8]:

 c24: result negative, denoted by Neg in the instruction listing given below
 c23: result standardized, denoted by St
 c22: result non-zero, denoted by Nz
 c21: carry-out from ms accumulator bit during addition or subtraction, denoted by Ca
 c20: arithmetic overflow, denoted by Of
 c19: normal interrupt permit
 c18: attention interrupt permit
 c17: invalid information transfer
 c6 – c1: these give the state of six manual switches on the operator’s console.

The C bits can be inspected in toto by transferring C into the accumulator, M, by the 700/520
instruction (see below). In some instances, a 24-bit link is formed by adding the current value
of the program counter S to bits 24 – 18 of C, thereby preserving the essential control-state of
a program in a compact form prior to entering a subroutine.

Elliott 4100 series instruction set.
In the instructions listed below, m is the contents of M, r is the contents of R, s is the contents
of S, and k is the contents of K. Primes indicate the new values at the conclusion of an
instruction, a notation chosen in other sections of the Our Computer Heritage website. It is
significant that, in the original Elliott-Automation documentation for the 4100 series, the Algol
symbol for ‘becomes equal to’ (:=) was used instead of primes, a hint that the architecture of
the 4100 series computers was oriented towards the needs of high-level language compiler
writers. In the list below, square brackets indicate ‘contents of address’; thus, [r] means ‘the
contents of location addressed by the R register’. There are four six-bit characters per word;
these are denoted by {a, b, c, d}, where a is stored at the most significant end of the word.

There are several choices of operand-addressing for each combination of the F bits (the op
code), depending upon how the Y bits are to be interpreted. Rather than show every option
explicitly in the listing below, we show the action for short instructions and then the action for
long instructions. For the latter, three possibilities are distinguished in the listing below:

(a) the action is independent of the setting of the Y bits;
(b) a specific action is defined for the combination Y = 0;
(c) a specific action is defined for the cases of Y = 1, 2 or 3.

 3

In the listing below, these three cases are distinguished by filling in the Y column by: (a)
nothing, (b) y = 0; (c) y = 1,3. Finally, the actions for the shift instructions, the register-to-
register instructions, the input/output instructions and the extracode instructions also depend
upon the values of the N digits. For clarity, these four sub-groups of instructions are listed
separately, after the straightforward computational orders have been described. Since the Z
field in an instruction is zero for all except extracodes, the Z field has been omitted from all but
one of the sub-sections below. The values of the F-bits are given in octal below.

The behind-the-scenes hardware decoding of the F, Y, Z and N fields of a long instruction is
complex. For this reason, the documentation issued to Elliott users laid emphasis on
assembly-language mnemonics, rather than on bit-patterns, when tabulating instructions. The
mnemonics, reproduced below, are those used in the NEAT (National Elliott Assembly
Technique) and the SAP (Symbolic Assembly Programming language) programming manuals.

Group A: straightforward short and long instructions.

 F F Y principal action(s) description mnemonic
(short) (long)
00 40 m’ = m + Q Add, using main accumulator ADD
01 41 m’ = m – Q Subtract SUB
02 42 m’ = Q – m Reverse-subtract NADD
03 43 m’ = Q Load accumulator LD
04 44 r’ = Q Load reserve accumulator LDR
05 s’ = n; c’24-18 = n24-18 Exit JIR

45 y = 0 s’ = N Unconditional jump J
45 y = 1,3 s’ = Q Unconditional jump JI

06 46 m’ = m & Q Logical AND AND
07 47 m’ = m & ⌐Q Logical AND NOT ANDN
10 50 r’ = r + Q Add, using reserve accumulator ADDR
11 51 r’ = r – Q Subtract SUBR
12 52 r’ = Q – r Reverse subtract NADR
 53 y = 0 0’ = c24-18 + s; s’ = s + N Subroutine entry, addr zero for link JFL
13 53 y = 1-3 0’ = c24-18 + s; s’ = Q Subroutine entry, addr zero for link JIL
14 54 k’ = Q Load K, the count register LDK
15 shift instructions – see explanation below
 55 compare (m – Q) set the conditions register accordingly COMP
16 56 y = 0 s’ = s + N unconditional relative jump forwards JF
 56 y = 1,3 s’ = s + Q unconditional relative jump forwards JA
17 57 y = 0 s’ = s – N unconditional relative jump backwards JB
 57 y = 1,3 s’ = s – Q unconditional relative jump backwards JS
20 60 y = 0 if Neg then s’ = s + Q relative jump forwards if negative JN
21 61 y = 0 if not Neg then s’ = s + Q relative jump forwards if not negative JNN
22 62 y = 0 if not Nz then s’ = s + Q relative jump forwards if zero JZ
23 63 y = 0 if Nz then s’ = s + Q relative jump forwards if non-zero JNZ
24 64 y = 0 if St then s’ = s + Q relative jump forwards if standardized JST
25 65 y = 0 if Of then s’ = s + Q relative jump forwards if overflow JOF
26 (unassigned?)
27 67 y = 0 k’ = k – 1; if k12 = 1 then s’ = s + Q decrement, test and jump if DKJN
30 60 y = 1,3 Q’ = m store accumulator ST

 4

31 61 y = 1,3 Q’ = r store reserve accumulator STR
32 62 y = 1,3 Q’ = – Q negate the contents of memory NEGS
33 63 y = 1,3 Q’ = Q – m subtract acc from store SUBS
34 64 y = 1,3 Q’ = Q + m add acc to store ADDS
35 65 y = 1,3 Q’ = 0 clear memory location CLS
36 66 y = 1,3 Q’ = Q + 1 increment memory location INCS
37 67 y = 1,3 Q’ = Q – 1 decrement memory location DECS
 70 y = 0 register-to-register moves – see explanation below
 70 y = 1,3 Q’ = Q(bcda); m’ = m(abc)Q(a) fetch next character GET
 71 y = 1,3 Q’ = Q(bcd)m(d) store next character PUT
 72 y = 1,3 m’ = (r,m)/Q divide, double-length DIVM
 73 y = 1,3 (r,m)’ = (r,m) x Q multiply, double-length MULM
 74 y = 1,3 m’ = Q; [r]’ = m; r’ = r – 1 pop up from a stack MVE
 75 y = 1,3 Q’ = m; m’ = [r]; r’ = r + 1 push down onto a stack MVB
 76 y = 1,3 swap Q and m exchange values of Q and m EXC
 77 y = 1,3 swap Q and r exchange values of Q and r EXCR

The input/output instructions, for which the F bits = octal 74 to 77 and for which the Y bits = 0,
are described later.

Group B: shift instructions.
The shift instructions, which are short orders for which the F bits = octal 15, use the N bits to
determine the mode of shifting (ie left or right, logical, arithmetic or circular) and the K bits to
determine the number of places shifted. The list of permitted possibilities is as follows, in
which the value of the six N digits is given in octal:

F N action mnemonic
15 00 shift r left arithmetically k places SRL
15 01 shift r left circularly k places SRLA
15 02 shift r right arithmetically k places SRR
15 03 shift r by k 6-bit characters circularly left SRLC
15 04 shift m left arithmetically k places SML
15 05 shift m left circularly k places SMLA
15 06 shift m right arithmetically k places SMR
15 07 shift m by k 6-bit characters circularly left SMLC
15 12 shift r right logically by k places SRRL
15 16 shift m right logically by k places SMRL
15 20 shift r until standardized, or k places, whichever is less SRST
15 24 shift m until standardized, or k places, whichever is less SMST
15 40 shift both m and r arithmetically left k places SBL
15 42 shift both m and r arithmetically right k places SBR
15 52 shift both m and r logically right k places SBRL
15 62 shift m and r until standardized, or k places, whichever is less SBST

Group C: register-to-register instructions.
The register-to-register instructions, which are long orders for which the F bits = octal 70 and
the Y bits = 0, use the N bits to define the registers involved. The list of assigned
combinations, for which the value of the 15 N digits is given in octal, is as follows:

 5

F Y N action mnemonic

70 0 00020 r’ = k KTOR
70 0 00402 r’ = m MTOR
70 0 00404 r’ = s STOR
70 0 00441 r’ = r + 1 if carry set CAIR
70 0 00541 r’ = r – 1 if carry set CADR
70 0 01001 m’ = r RTOM
70 0 01003 m’ = m OR r MORR
70 0 01010 m’ = c CTOM
70 0 02001 s’ = r RTOS
70 0 02002 s’ = m MTOS
70 0 04002 c’ = m MTOC
70 0 10001 k’ = r RTOK
70 0 10002 k’ = m MTOK
70 0 10201 k’ = – r RNTK
70 0 21000 m’ = interrupt word (see below) ITOM
70 0 41000 m’ = attention word (see below) ATOM

Group D: input/output instructions.
The input/output instructions, for which the F bits = octal 74 to 77 and for which the Y bits = 0,
use the first three octal digits of N to supplement the F bits. The last two octal digits of N,
denoted as nn below, define the peripheral channel number. The 4100 Standard Interface
normally provides for up to 12 independent, asynchronous, input/output channels – (with extra
channels as an option, up to 14?). Each channel can call for either of two types of program
break: an Interrupt or an Attention. Two 12-bit locations, the Interrupt word and the Attention
word, are provided and each may be inspected by program using the ITOM and ATOM
instructions above. Beneath this level, a hardware Hesitation (high-priority interrupt) is also
provided for use with devices using hardware-assisted autonomous data transfers (ADT) and
cycle-stealing.

A hardware Autonomous Transfer Unit (optional for the 4120, built-in for the 4130) organizes
bulk data transfers via cycle-stealing in a manner independently from the main CPU. Thus,
input/output activity could be interleaved with normal computing. Up to three packed transfer
units and one unpacked transfer unit may be included in an Autonomous Transfer Unit.

The 4100 Standard Interface has eight data-in lines, 8 data-out lines, three interrupt lines and
eleven other control, status and timing signals. The input/output instructions for peripheral
channel nn are as follows:

F Y N action mnemonic
74 0 000nn Input data packed repetitive IDPR
74 0 100nn Output data packed repetitive ODPR
74 0 200nn Input data unpacked repetitive IDUR
74 0 300nn Output data unpacked repetitive ODUR
75 0 000nn Input status word packed repetitive ISPR
75 0 100nn Output control word packed repetitive OCPR
75 0 200nn Input status word unpacked repetitive ISUR
75 0 300nn Output control word unpacked repetitive OCUR

 6

76 0 200nn Input data unpacked single to m IDUM
76 0 300nn Output data unpacked single from m ODUM
77 0 200nn Input status word unpacked single to m ISUM
77 0 300nn Output control word unpacked single from m OCUM

Group E: Extracodes.
When Z = 1 and the F-bits are in the octal range 40 to 77, an extracode instruction may be
indicated, though only about 26 of the available F-bit combinations are allocated as actual
extracodes. The action upon encountering an extracode instruction varies according to
whether the Y bit (ie the address-mode bits) are zero or in the range 1 to 3, as follows:

Action for literal address mode (Y = 0):
 (a) place N in memory location 1;
 (b) place the link (c24 – 18 + S) in memory location 2;
 (c) jump to a memory location given by twice the value of the F-bits, ie to one of the
 even-numbered locations in the range 64 to 126 inclusive. This is then the start of a
 standard subroutine for implementing the extracode.

Action for other addressing modes (Y = 1, 2 or 3):
 (a) if Y = 1 then place N in location 1, or
 if Y = 2 then place (N + r) in location 1, or
 if Y = 3 then place the contents of address N in location 1;
 (b) place (c24 – 18 + S) in memory location 2;
 (c) jump to a memory location given by twice the value of the F-bits plus 1, ie to one of
 the odd-numbered locations in the range 65 to 127 inclusive.

The extracodes are now listed, with F, Y, Z and N being given in octal except that, for the Y
field, a ‘y’ indicates any number in the range 1, 2 or 3 and for the N field, an ‘n’ indicates any
valid address. Note that the 14 floating-point extracodes are implemented in hardware on the
Elliott 4130. On the 4130 where hardware is used, the mantissa occupies 48 bits within CPU
registers and the exponent 12 bits. This triple can be accessed collectively via the WUF and
FLU extracodes (see below). When held in memory, floating-point numbers are normally
rounded and packed into two words containing 39 bits of mantissa and 9 bits of exponent. The
following abbreviations are used in the list below:
 fpa = floating-point accumulator;
 fQ = the floating-point operand held in locations Q, Q+1.
 dQ = the double-length operand held in locations Q, Q+1.
 tQ = the triple-length operand held in locations Q, Q+1 and Q+2.

F Y Z N action mnemonic
40 0 1 0 fpa’ = – fpa FN
40 0 1 2 fpa’ = integer m in floating-point form FCP
40 0 1 4 fpa’ = modulus (fpa) FMOD
40 0 1 6 m’ = entier (fpa) FENT
41 0 1 10 if fpa < 0, m’ = – 1; if fpa = 0, m’ = 0; if fpa > 0, m’ = 1 FSIG
40 y 1 n fpa’ = fQ FL
41 0 1 0 copy to lower address CTLA
41 0 1 1000 copy to higher address CTHA
41 y 1 n fQ’ = fpa WF
42 y 1 n fpa’ = fpa + fQ FA

 7

43 y 1 n fpa’ = fpa – fQ FS
44 y 1 n fpa’ = fpa x fQ FM
45 y 1 n fpa’ = fpa / fQ FD
46 y 1 n set c24 – 22 from (fpa – fQ) FCP
50 y 1 n m’ = m x Q MULS
51 y 1 n m’ = m / Q; r’ = remainder DIV
52 y 1 n (r,m)’ = Dq BL
53 y 1 n dQ’ = (r,m) WB
54 y 1 n jump indirect and restore link JIRX
55 y 1 n jump indirect JIX
56 y 1 n jump indirect, setting link JILX
57 y 1 n access chapter item with index Q, placing its addr in R INDEX
60 y 1 n fpa’ = tQ (unrounded representation) FLU
61 y 1 n tQ’ = fpa (unrounded representation) WUF
77 0 1 n nth letter of alphabet displayed (on console) TR
77 y 1 n Q displayed in octal (on console) CH

The INDEX instruction in the above list assumes that a program’s memory-space is organised
into chapters – see also section E6/X4 – and that a particular chapter contains some form of
structured data such as an array or table. If an INDEX instruction is issued with the address of
a codeword (or descriptor) in R, then the address of the ith element of the data-structure to
which the codeword points is placed in R.

