LEO I instruction set.

Program actions on the LEO I computer

Each instruction of a LEO I program consisted of three parts. They were: the action to be carried out, the address of the compartment affected and the discriminant denoting the length of the compartment. Initially, following EDSAC practice, these parts were written as: Action Letter, Address Number and Suffix Letter (discriminant). Thus an instruction to add the contents of compartment 106 into the accumulator was perforated onto paper tape as:
$\begin{array}{ll}\text { A } 106 \mathrm{~F} & \text { for a short number } \\ \text { A } 106 \mathrm{D} & \text { for a long number }\end{array}$
ON LEO I this was later changed and a purely numerical notation was used and perforated onto paper tape as:

$$
\begin{array}{ll}
2810617 & \text { for a short number } \\
2810619 & \text { for a long number }
\end{array}
$$

The format of the instruction was:

5	1	10	1
Action	Sp	Address	suffix

Of the 32 possible actions (0 to 31) only 17 were provided when LEO I was first used. These 17 are identified in the full list below by the insertion, in brackets, of the original EDSAC action letter beside the corresponding action number. Eventually, as development proceeded, 30 actions were available to programmers. Some of the actions became redundant, but new actions were added. In the end values 0,9 and 15 were not used, but 29 performed two different functions according to the value of the discriminant. The actions fell into three broad categories.

Sequence control actions:
Arithmetic and data manipulation actions:
Input and output actions:

2, 3, 13, 27 and 29.
$1,4,5,6,7,8,12,14,21,22,25,26,28,30$ and 31 .
$10,11,16,17,18,19,20,23$, and 24.

The data for this, and the list which follows, has been gathered from two sources:

1. The EDSAC Simulator available from http://www.dcs.warwick.ac.uk/~edsac/
2. Peter J. Bird's book "LEO: The First Business Computer", see
http://www.leocomputers.org.uk/newbooks.htm I had the pleasure of contributing the list of LEO installations and some paragraphs, supplying some photographs, proof checking the book and suggesting the title.

Instruction set for LEO I.

Action number/name

1 CLEAR

2 CONDITIONAL STOP

3 (E) TEST POSITIVE

4 (R) SHIFT RIGHT

5 (T) TRANSFER FROM ACCUMULATOR

6 (Y) ROUND OFF

7 (U) COPY FROM ACCUMULATOR

8 NEGATIVE AGGREGATE *

10 CARD PUNCH OUTPUT

11 TABULATOR OUTPUT

12 (S) SUBTRACT

description

Clear double compartment specified and all later compartments in same tube of store.

If external switch has been set, reset calculator ready to carry out next order when restart button is pressed and light stop lamp, otherwise proceed to next order.

Test sign position of accumulator. If it contains ' 0 ', change sequence to order contained in compartment specified by address.

Shift right contents of accumulator by number of positions indicated by position of first ' 1 ' in address.

Transfer the most significant 17 or 35 digits of contents of accumulator into compartment specified by address and clear accumulator.

Round off contents of accumulator to 34 significant places by adding a ' 1 ' into the more significant of the second half of accumulator.

Copy contents of accumulator into compartment specified by address.

Clear accumulator and subtract from it contents of double compartment specified and all later double compartments in same tube of store.

Send out results for punching on a card from first twelve double compartments of tube specified.

Send out results for printing by tabulator from tube specified.

Subtract from accumulator contents of
compartment specified.

13 (Z) STOP
14 SELECT
16 CONVERT HOLLERITH
17 (F) CONVERT DECIMAL **

18 CONVERT STERLING

Reset calculator ready to carry out next order when restart button is pressed and light stop lamp.

Replace contents of accumulator by contents of compartment specified by address.

Convert a number held in Hollerith notation in tube specified to binary.

Select long number from address specified and convert from binary-decimal to full binary and add result into more significant half of accumulator.

Select long number from address specified and convert from binary-sterling into full binary and add result into more significant half of accumulator.

Reconvert long number in full binary into punched notation in special output tube. According to what is specified in order, express in decimal or sterling. Use number of digit positions specified and start a new line of results.

Clear tube of store specified and put into it next block of information from No. 1 paper tape.

Set up in multiplier register contents of compartment specified by address.

Multiply contents of compartment specified by contents of multiplier register and subtract result from accumulator.

Clear tube of store specified and put into it next block of information from No. 2 paper tape or put into first twelve double compartments of it next block of information from No 2 card feed.
24 CARD INPUT \(\left.\left.1 \quad $$
\begin{array}{l}\text { Clear tube of store specified and put into first } \\
\text { twelve double compartments of it next block of } \\
\text { information from No } 1 \text { card feed. }\end{array}
$$\right\} \begin{array}{l}Shift left contents of accumulator by number

of positions indicated by first '1' in order.\end{array}\right\}\) (L) SHIFT LEFT 26 (X) AUGMENT | Augment contents of accumulator to the |
| :--- |
| contents of compartment specified by address |
| and clear accumulator. |

* On EDSAC action (I) was input next character from paper tape.
** On EDSAC action (F) was read last character output for verification.

Tony Morgan, Eastcote, May 2009.

