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1.  HISTORICAL AND TECHNICAL BACKGROUND 
When ICT merged with English Electric Computers in 1968, EEC’s real–time department was hived off to another 
newly–synthesised company, Marconi Elliott Computer Systems. A group of EEC engineers who preferred not to 
relocate from Kidsgrove to Borehamwood decided that—rather than work for MECS—they would start a new 
company: Information Computer Systems (ICS). ICS took over disused railway works in Crewe and proceeded to 
develop the Multum, a series of 16–bit real–time minicomputers that ranged from the basic Arithmetic Logic 
Processor/1 (ALP/1), comparable with a PDP–11/20, to the ALP/3, an 8MHz CPU with virtual memory and floating 
point hardware.  
 
The Multum had some generic similarities, and some common roots, with the GEC 4080. An open question is how it 
related to another contemporary, the Marconi Locus 16, which also used the distinctive ‘ALP’ term for a CPU. 
 

2.  MODELS AND MACHINE VERSIONS 
Designed as a multiprocessor complex, the Multum was more powerful than any contemporary PDP–11. In a maximal 
configuration it would have had 4 store modules of 128K bytes each, and 8 processors, connected by a crossbar switch 
that allowed all 4 stores to be accessed simultaneously. Of the 8 processors, up to 4 could be CPUs in any mix of 
ALP/1s, ALP/2s and ALP/3s (the ALP/2 was an ALP/3 without the floating point feature). The remaining processors 
could be any mix of Communications Processors, supporting asynchronous and synchronous line units; and 
Multiplexed I/O Processors, which were similar to IBM’s Multiplexor Channels. 
 
The Basic I/O Processor was a selector channel (in IBM terms). That is, it was dedicated to one DMA transfer at a time. 
It was implemented in the CPU microcode, by stealing store cycles for device controllers between RAM accesses by the 
running program. To gain the efficiency offered by keeping I/O devices in simultaneous operation, the BIOP could be 
timeshared, in a manner closely analogous to timesharing the CPU. This created a virtual BIOP for each peripheral 
controller. Virtualizing the BIOP was made feasible by the fact that each controller had adequate buffering to keep its 
device going while it was not being serviced by the BIOP.  
 
Unlike the GEC 4080, the Multum did not have a microcoded operating system kernel. That functionality was 
implemented in software, with the help of a context switching instruction and a memory map providing each process 
with 16 variable length areas of up to 4K words. Each area could have its own access status, could be independently 
sized, and could be independently located in RAM, which was implemented as core storage with a 650ns cycle time. 
 

3.  DELIVERY LIST AND APPLICATIONS 
The Multum was announced in early 1972, and by early 1973 the Computing Science Department at Glasgow 
University (GUCS) had acquired a pre–production model, with a view to conducting research in operating systems and 
compilers. So far as is known, this was the only ALP/3 configuration ever built. It had: 

• an ALP/3 processor, 
• one 64K word (128K byte) RAM module, 
• a CDC video terminal as the control console, 
• a CDC 300 lines/minute line printer, 
• a Documation 300 cards/minute card reader, 
• an Elliott 1000 characters/second paper tape reader, 
• a Facit 110 characters/second paper tape punch, and 
• a CDC 60M byte disk drive. 

There was no crossbar switch, Communications Processor or Multiplexed I/O Processor. Instead, all the individual 
device controllers were fitted to the CPU’s Basic I/O Processor. 
 



 2 
It is difficult to be sure how many other Multum computers were built. Apart from the ALP/3 at GUCS, there must 
have been at least an ALP/2 at ICS’s Crewe base, because they completed an Executive with virtual memory support, 
which would have required extensive testing on an ALP/2 or ALP/3. There was also an ALP/1 there that had a recycled 
drum store for efficient access to program development software. Another ALP/1 was owned by Monotype, in Redhill, 
presumably with a view to applications in typesetting.  
 
GUCS contracted with ICS to develop a general purpose operating system to complement their real–time system. As a 
first step, a Multum Pascal compiler was half–bootstrapped from the ICL 1900 Series Pascal implementation by Jim 
Welsh and Colm Quinn [1]. This made Multum Pascal the grandchild of Wirth’s famous CDC implementation [2]; it 
was probably the world’s third Pascal compiler, and was almost certainly the first on a 16–bit minicomputer [3]. 
 
The operating system project got as far as testing a microkernel–based Executive written in Symbolic Usercode 
Language, the Multum assembler; specifying major OS components; and prototyping a filing system written in Pascal. 
 
ICS contracted a small software company, Dill–Russell Holdings, to supply it with FORTRAN and BASIC compilers. 
Dik Leatherdale was given the job of writing the runtime support routines for FORTRAN I/O, using the Monotype 
ALP/1 at Redhill, but was only six weeks into the job when ICS collapsed, following a financial crisis in the USA that 
caused their backers to withdraw funding overnight.. 
 
Only one genuine application program is known with certainty to have run on the Multum, and that was rather abstruse. 
It was written by the mathematician Jenifer Haselgrove, to discover a tiling of a 15×15 square by 45 Y–pentominoes. 
Many years later her resulting publication [4] was referenced by Donald Knuth [5]. 
 

4. SYSTEMS ARCHITECTURE 

REGISTER STRUCTURE 
The Multum ALP/3 had the following working–register set: 
A The primary 16–bit arithmetic register 
B  The primary 16–bit index register 
E/F  The 32–bit extended arithmetic register obtained by concatenating A and B (notated F for floating point orders) 
X  A secondary 16–bit index register 
Y  A secondary 16–bit index register 
S The 16–bit program counter (sequence) register 
P The 16–bit procedure stack frame base register 
C The 16–bit conditions register that contained CPU state bits such as Carry, Arithmetic Overflow, and so on. 
There was only one copy of these registers, so they were saved and restored as part of a context switch. 

VIRTUAL ADDRESSING 
Each program level (process) worked in its own 16–bit address space. The addressable unit was the 16–bit word, so 
that the virtual address space encompassed 64K words. It was divided into 16 virtual domains of 4K words, each of 
which was independently relocatable within physical storage, mapped a physical area varying in increments of 64 
words, and could be set to expand towards lower or towards higher addresses. Each domain had its own access status, 
which was one of No Access (NA); Read Only (RO) for constant data, neither executable nor writable; Code Only (CO) 
for executable code, but allowing embedded constants to be read; and Read Write (RW), but not executable. There were 
16 domain–descriptor registers, which could be loaded, as a group, by the privileged ENTL instruction. 
Domain 1 (the range of virtual addresses from 4K to 8K–1) contained a level’s master segment. This was its ‘process 
control block’: a store for the most recently saved contents of the level’s working registers and its domain descriptors, it 
normally had RO status to the level. On a context switch from level p to level q, the Executive saved the working 
registers in the master segment of p, then defined a master segment for q by loading domain register 1 for q, and finally 
restored the contents of the working registers and (other) domain registers for q from its master segment, using ENTL. 

ADDRESS GENERATION AND ADDRESSING MODES 
A 16-bit Multum instruction has room for, at most, 8 bits of address constant; so almost all addresses had to be derived 
from the contents of registers. Registers A, B, P, S, X and Y could be used in this way, but were few and had other 
duties that prevented their customary employment as bases. In mitigation, the Multum had the concept of memory–
held registers. The P register contained an address which was conventionally the base for the local variables of a 
procedure. The 8 locations at [P]+0 through [P]+7 were that procedure’s memory–held registers, and addressing modes 
were provided to allow them to be used as addressing bases. By initializing these words with suitable values, every 
procedure had at its disposal 8 independent base pointers, the trade off being an additional store cycle to fetch the 
pointer value. (The 8 locations at [P]+8 through [P]+F were also known as memory–held registers, but had much more 
limited functionality and could not be used as address bases.) 
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A Multum virtual address identified a 16–bit word, not a byte. An un–indexed byte handling order always accessed the 
most significant half of the word in store. However, if the addressing mode specified an index register, the content of 
the latter was taken to be a byte offset from the base address. This was achieved by shifting the index value right one 
place before adding it to the base address, to locate the word that contains the byte. The bit that was shifted off at the 
right selected which of the two bytes in that word was to be the operand, byte 1 being the less significant halfword. 
Similarly, some orders access double–word operands, and here the address scaling worked in the opposite manner: the 
index was taken to be a double–word offset, and so was shifted left one place before being added to the base address. 
No shifting of the index value was done for word operands. So the effect of an order with base address B and index i 
was always to access the i–th item of the implied operand size, with the zeroth item being located at the base address B. 

INSTRUCTION SET AND TIMING 
Each instruction fetch, and each operand-word access took 750ns (650ns rounded up to a multiple of 125ns by the 
8MHz clock), plus the time taken by the virtual addressing mechanism on the ALP/2/3. A simple operation such as 
ADDA or LORA, with a literal operand, took 1.375µs; but 2.25µs with a store operand. A 32-bit floating-point addition 
took about 7µs. A better general idea of the performance of the ALP/3 can be obtained from the code examples in [3]. 

 NOTATIONAL CONVENTIONS 
All instructions occupy 16 bits, numbered 0 through F in the machine code diagrams below. The bits comprising a field 
of a machine code order are flagged in the following with the same italic letter, e.g. the eight ds distributed across the 
displacement field in the first format below. In the description of the semantics of the order, a bold italic letter, e.g. d, 
denotes the value of the corresponding field as a whole.  
 [x] denotes the contents of x, whether it be a register or a store location. 

ORDERS WITH A LITERAL OPERAND OR A STORED OPERAND 
For these orders, mnem represents one of the following operations: 

f mnem  OPERATION 
01 STBS  store B in a word 
02 STHS  store lower halfword of A in a byte 
03 STES  store E in a double–word 
04 JUMP  load S with effective address 
05 LODP  load P with effective address 
06 STAS  store A in a word 
07 LINK  store S+1 in a word, to act as a subroutine return link 
08 SETE  load double–word operand to E 
09 ADDE  add double–word operand to E 
0A SUBE  subtract double–word operand from E 
0B SETB  load word operand to B 
0C ADDF  add floating double–word operand to E 
0D SUBF  subtract floating double–word operand from E 
0E MLTF  multiply floating double–word operand into E 
0F DIVF  divide floating double–word operand into E 
10 reserved for expansion 
11 SETH  load byte operand to lower halfword of A 
12 CASH  compare byte operand with lower halfword of A and skip {S := [S] + 1} if equal 
13 SETA  load word operand to A 
14 ADDA  add word operand to A 
15 SUBA  subtract word operand from A  
16 MLTA  multiply word operand into A, giving a 32–bit product in E 
17 DIVE  divide word operand into E, giving a quotient in A and remainder in B 
18 ANDA  logical and word operand to A 
19 LORA  logical or word operand to A 
1A NEVA  logical exclusive or word operand to A (not equivalent) 
1B MASA  mask word operand with A and skip {S := [S] + 1} if 0 
1C CASA  compare word operand with A and skip {S := [S] + 1} if equal 
1D EXAS  exchange A with word operand 
1E INCS  increment word operand and skip {S := [S] + 1} if 0 
1F DECS  decrement word operand and skip {S := [S] + 1} if 0 
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0 1 2 3 4 5 6 7 8 9 A B C D E F 
f f f f f 1 m m d d d d d d d d 
 

For store–addressing modes, the effective address, e, is computed as [r] + d, –128 ≤ d ≤ 127, where r is the register 
supplying the base address; or as [[r] + d] for the indirect modes. 

USERCODE FORMAT (if d is an identifier or assembly–time expression, it must be enclosed in parentheses) 
mnem Ld {for m=0, fetch–type orders, the literal operand is 0 ≤ d ≤ 255} 
mnem SdI {for m=0, store–type orders, e=[[S] + d]} 
mnem Sd {for m=1, e=[S] + d} 
mnem Pd {for m=2, e=[P] + d} 
mnem PdI {for m=3, e=[[P] + d]} 
 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
f f f f f 0 1 i i i d d d d d d 
 

For this mode the effective address, e, is given by [Mi] + d, d ≤ 63, where Mi is the i–th memory–held register, 
i.e. [Mi] is [[P] + i]. 

USERCODE FORMAT 
mnem Mi d { e=[Mi] + d} 
 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
f f f f f 0 0 i i i m m m j j j 
 

For these modes the base address is given by the sum of two memory–held registers [Mi] + [Mj], which may be used 
directly, or as an indirect address, and then optionally indexed by the contents of the X register or the Y register, which 
is scaled appropriately (denoted by [X]*, for example). 

USERCODE FORMAT 
mnem Mi Mj {for m=0, e=[Mi] + [Mj]} 
mnem Mi MjI {for m=1, e=[[Mi] + [Mj]]} 
mnem Mi MjX {for m=2, e=[Mi] + [Mj] + [X]*} 
mnem Mi MjIX {for m=3, e=[[Mi] + [Mj]] + [X]*} 
mnem Mi MjY {for m=4, e=[Mi] + [Mj] + [Y]*} 
mnem Mi MjIY {for m=5, e=[[Mi] + [Mj]] + [Y]*} 
 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
f f f f f 0 0 i i i 1 1 0 m j j 
 

For these modes the effective address is the sum of a memory–held register and a working register; i.e., [Mi] + [r]*; 
where r may be: j=0 → A, 1 → B, 2 → X, 3 → Y, is scaled appropriately, and is optionally auto–incremented. 

USERCODE FORMAT 
mnem Mir {for m=0, e=[Mi] + [r]*} 
mnem Mir + {for m=1, e=[Mi] + [r]*; r := [r] + 1} 
 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
f f f f f 0 0 i i i 1 1 1 m j j 
 

For these modes the effective address is the sum of two working registers; i.e., [s] + [r]*, where: 
the base, s may be: i=0 → A, 1 → B, 2 → X, 3 → Y, 4 → S, 5 → P, 6 → Z (= 0), 7 → D (= –1); and 
the index, r may be: j=0 → A, 1 → B, 2 → X, 3 → Y, is scaled appropriately, and is optionally auto–incremented. 

USERCODE FORMAT 
mnem sr {for m=0, e=[s] + [r]*} 
mnem sr + {for m=1, e=[s] + [r]*; r := [r] + 1} 
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LITERAL OR MEMORY–HELD REGISTER BIT–NUMBER PARAMETER: RE/SET OR TEST BIT 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 0 1 f f i i m j j j j 
 

For these orders, the parameter p is either the literal j or [Mj]. 
r is: i=0 → A; 1 → B; 2 → X; 3 → Y. 

USERCODE FORMAT 
mnem Lj {for m=0} 
mnem Mj {for m=1}  

INSTRUCTIONS  

f mnem  OPERATION 
0 BSOr  Set bit p of r to 1 
1 BSZr  Reset bit p of r to 0 
2 SOBr  Test bit p of r and skip {S := [S] + 1} if 1 
3 SZBr  Test bit p of r and skip {S := [S] + 1} if 0 
 

LITERAL OR MEMORY–HELD REGISTER ADDEND PARAMETER: ADD/SUBTRACT REGISTER 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 1 0 f i i i m j j j j 
 

For these orders, the parameter p is either the literal j or [Mj]. 
r is: i=0 → A; 1 → B; 2 → X; 3 → Y; 4 → S; 5 → P.  

USERCODE FORMAT 
mnem Lj {for m=0} 
mnem M j {for m=1} 

INSTRUCTIONS  

f mnem  OPERATION 
0 ADMr  Add p to r 
1 SBMr  Subtract p from r 
 

LITERAL OR MEMORY–HELD REGISTER SHIFT–LENGTH PARAMETER: 16–BIT SHIFTS 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 1 1 0 f f i m j j j j 
 

For these orders, the parameter p is either the literal j or [Mj]. 
r is: i=0 → A; 1 → B.  

USERCODE FORMAT 
mnem Lj {for m=0} 
mnem Mj {for m=1} 

INSTRUCTIONS  

f mnem  OPERATION 
0 LSRr  Logical shift right r, p places 
1 LSLr  Logical shift left r, p places 
2 ASRr  Arithmetic shift right r, p places 
3 CSLr  Circular shift left r, p places 
 
  



 6 
LITERAL OR MEMORY–HELD REGISTER SHIFT–LENGTH PARAMETER: 32–BIT SHIFTS 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 1 1 1 0 f f m j j j j 
 

For these orders, the parameter p is either the literal j or [Mj]. 

USERCODE FORMAT 
mnem Lj {for m=0} 
mnem Mj {for m=1} 

INSTRUCTIONS  

f mnem  OPERATION 
0 LSRE  Logical shift right E, p places 
1 LSLE  Logical shift left E, p places 
2 ASRE  Arithmetic shift right E, p places 
3 CSLE  Circular shift left E, p place 
 

LITERAL OR MEMORY–HELD REGISTER PARAMETER: LOAD REGISTER 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 1 1 1 1 f f m j j j j 
 

For these orders, the parameter p is either the literal j or [Mj]. 
r is: f=0 → A; 1 → B; 2 → X; 3 → Y.  

USERCODE FORMAT 
mnem Lj  {for m=0} 
mnem Mj  {for m=1} 

INSTRUCTIONS  

f mnem  OPERATION 
0 LDMA  Load p into A 
1 LDMB  Load p into B 
2 LDMX  Load p into X 
3 LDMY  Load p into Y 
 

REGISTER–TO–REGISTER OPERATIONS 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 0 0 1 f f f i i j j j 
 

r is: i=0 → A; 1 → B; 2 → X; 3 → Y. 
s is: j=0 → A; 1 → B; 2 → X; 3 → Y; 4 → S; 5 → P. 
t is: j=0 → ZZ, r = 0?; 1 → PZ, r ≥ 0?; 2 → NN, r < 0?; 3 → PP, r > 0?; 4 → NZ, r ≤ 0?; 5 → DD, r = –1?; 
          6 → IZ, r := r+1; r = 0?; 7 → DZ, r := r–1; r = 0?. 

USERCODE FORMAT 
mnem s  {for f in 0..5} 
mnem t  {for f = 6, 7} 

INSTRUCTIONS  

f mnem   OPERATION 
0 ADRr  Add s to r 
1 SBRr  Subtract s from r 
2 LDRr  Load s into r 
3 EXRr  Exchange s and r 
4 SERr  skip {S := [S] + 1} if  s = r 
5 SURr  skip {S := [S] + 1} if  s ≠ r 
6 STCr  Apply test t to r, skip {S := [S] + 1} if true  
7 SFCr  Apply test t to r, skip {S := [S] + 1} if false  
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LITERAL OR MEMORY–HELD REGISTER PARAMETER: PRIVILEGED OPERATIONS 
0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 0 0 0 f f f m j j j j 
 

For these orders, the parameter p is either the literal j or [Mj]. 
USERCODE FORMAT 
mnem  Lj   {for m=0} 
mnem  Mj   {for m=1} 
INSTRUCTIONS  
f mnem  OPERATION 
1 INTN  Interrupt processor p 
2 RDOM  Read domain descriptor into E from domain register p  
3 SDOM  Set domain descriptor from E into domain register p 
4 TRGA  Trigger (command) A to I/O Processor (IOP) p 
5 TRGB  Trigger (command) B to IOP p 
6 TRGC  Trigger (command) C to IOP p 
7 TRGD  Trigger (command) D to IOP p 
 

PARAMETERLESS: f IN 0..F → PRIVILEGED, f IN 10..1F → UNPRIVILEGED 
 

 

USERCODE FORMAT 
mnem 
INSTRUCTIONS 
f mnem  OPERATION 
00 HALT  Stop the ALP until restarted by the operator 
01 WAIT  Stop the ALP until an interrupt is requested 
02 INHI  Inhibit interrupts 
03 ALLI  Allow interrupts 
04 REDL  Read highest–priority MIU interrupt level into A 
05 SETL  Set MIU interrupt level given in A 
06 RESL  Reset MIU interrupt level given in A 
07 MCTA  Move Conditions register to A 
08 ATPC  Move A to Conditions register  
09 ENTL  Enter level (i.e., dispatch process) 
0A SALM  Set audio–visual alarm 
0B RALM  Reset audio–visual alarm  
0C SDSU  Set status of domain descriptor in E to unavailable 
0D SDSR  Set status of domain descriptor in E to read–only 
0E SDSC  Set status of domain descriptor in E to code–only 
0F SDSW  Set status of domain descriptor in E to readable–and–writable 
10 CLRA  Set A to 0 
11 CLRB  Set B to 0 
12 MRKA  Set A to –1 
13 MRKB  Set B to –1 
14 SNCO  skip {S := [S] + 1} if No Carry Overflow 
15 SNAO  skip {S := [S] + 1} if No Arithmetic Overflow 
16 EXEC  Executive (system) call 
17 TEST  Test point trap, used to invoke a debugger 
18 FLTI  Float integer in E 
19 FLTF  Float fraction in E 
1A FIXI  Fix integer in E 
1B FIXF  Fix fraction in E 
1C STND  Standardise (normalise) E 
1D NEGF  Negate floating point 
1E NEGA  Negate A    
1F NEGE  Negate E 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 0 0 0 0 0 0 f f f f f 
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SOME NOTEWORTHY INSTRUCTIONS 
JUMP 
This was the only general jump order; all conditional orders merely skipped the following instruction word. For 
example, to go to L if [A] = 0, we might use code such as: 

STCA NZ / skip if [A] ≠ 0 
JUMP S(L–*) / self–relative jump to L if [A] = 0 

In combination with the restricted addressing range of the Multum, the skip–and–jump idiom can lead to rather 
inefficient control structures. The problem lies in the jump: at the time it is generated, if the order labelled L is more 
than 128 words away, or a compiler does not know how far away L is, a direct jump cannot be used. This forces us to 
use an indirect jump, with a second word reserved for the target pointer. It also forces us to include a hop around the 
indirect jump, and to reverse the sense of the skip, thus: 

STCA ZZ / skip to the jump if [A] = 0 
JUMP S2 / hop around the jump if [A] ≠ 0 
JUMP S0I / self–relative indirect jump to L if [A] = 0 
(L)  / pointer to L 

Life would have been so much easier with 2–word conditional jump instructions instead of the skips:  
JTCA ZZ / jump if [A] = 0 (NOT Multum!) … 
(L)  / to L 

LINK 
LINK was used in concert with JUMP to synthesize subroutine calls. Relatively primitive minicomputers of the era had 
a call order that stored the return address in the first word of the subroutine, and jumped to the second. This grievously 
hampered the use of re–entrant code. The Multum LINK order could place the return address in any addressable 
location. In particular, it could be stored in the stack frame of the called subroutine, so that recursive and re–entrant 
code was well supported.  
In general we do not know how far away SUBR is, so we must again resort to indirection:  

LINK ZX+ / stack the return address 
JUMP S0I / self–relative indirect jump to SUBR 
(SUBR) 

But now the return address saved by LINK leads back to the target pointer word! In consequence, it is necessary to 
increment the return address inside SUBR before using it: 

INCS P(RA) / increment the stored return address 
JUMP P(RA)I / go to the stored return address 

 

These problems with JUMP and LINK were much less acute for the human Usercode programmer, who should have 
had a good idea of whether a short–form jump would be sufficient, and who could make amends if the assembler found 
differently. It is also fair to say that a 2–pass compiler should be able to do a much better job with jumps. Even a 1–pass 
compiler might be able to make worthwhile mitigations, such as marshalling target pointers into ‘pools’, interspersed 
between subroutines, so that they do not take up space in–line with the JUMP. A thorough–going implementation along 
these lines might yield efficiencies as good as the absent 2–word conditional jump orders, and perhaps even better if 
many jumps could share the same pooled pointer. 

INCS, DECS 
These instructions updated their operand atomically, so they were useful for implementing general semaphores. They 
were also nice for implementing counting loops. 

WAIT, INHI, ALLI 
The Multum defined three classes of interrupt. Internal interrupts include: power failure, store parity error, invalid 
instruction, Executive call, and virtual store access violation. Power and parity interrupts form class 0; invalid 
instructions, Executive calls, and access violation interrupts form class 1. Class 2 consists of the external interrupts: 
timer expiry, operator control panel key–press, and I/O interrupts. Interrupts were assigned both a priority (power 
failure being the highest and I/O the lowest), and a store location (‘interrupt vector’) in the range 2016 .. 2716 that was set 
to contain the address of the corresponding handler. When a class c interrupt was effected, all interrupts of class c or 
greater were inhibited. 
 
The WAIT order allowed an ALP to idle, executing no instructions, and hence consuming no store cycles in useless 
competition with other processors. On receipt of any interrupt request, instruction sequencing resumed as normal. The 
INHI instruction was used by an Executive to delay all further interrupts, typically while it was running an interrupt 
handler. In this state, interrupt requests were noted but not effected. ALLI undid the effect of INHI, and would 
typically be used just before return from an Executive to a process level. Interrupts were inhibited for one further 
instruction execution after obeying ALLI, to allow time for an ENTL instruction to complete the transition from 
Executive to process. All of these instructions were privileged. 
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REDL, RESL, SETL 
The Multi–level Interrupt Unit (MIU) was an option that arbitrated among interrupt requests from up to 16 external 
devices (typically, I/O processors) and presented the ALP with the asserted request of highest priority. In the absence of 
an MIU, interrupts from I/O devices were ‘commoned’ and share a single interrupt line. In this case, on receiving an I/O 
interrupt, Executive interrogated each active device to discover the source of the request. 
 
In response to an MIU interrupt, an Executive could discover the identity of the requesting device by means of the 
REDL order, which encoded the position of the highest–priority asserted MIU level and delivered it to the A register. 
That value could then be used to index a further vector of device–handler addresses. RESL was used to reset an asserted 
level in the MIU. It would typically be the first action of such a handler. SETL was used to assert a level in the MIU, 
thus scheduling a ‘software’ interrupt for future action. Again, these were all privileged instructions. 

ENTL 
The ENTL instruction performs the switch to another process. Domain register 1 was pre-loaded with the descriptor for 
the master segment of the target process. ENTL then (re–)established its context by loading the values of the working 
registers and the rest of the domain registers from the first few locations of the new master segment. The non–virtual 
memory ALP/1 had no domain registers and fewer working registers, so only the latter were loaded by its more limited 
ENTL instruction. 

MCTA, ATPC 
These instructions copied the C (Program Conditions) register to/from A. C was a 16–bit register that defined the 
operating state of the ALP. Its bits were laid out as follows: 
 

 

 
where: 
m is the number of a store module reporting a parity failure 
a indicates a parity failure in the ALP during a store cycle 
f indicates a floating–point error, and that the s field should be interpreted accordingly 
o indicates storage overflow (an attempt to access a non–existent physical or virtual address) 
p indicates an attempt to execute a privileged instruction in user mode 
v indicates an access violation, an attempt to access a domain in an impermissible manner 
u indicates whether the ALP is in user mode or in privileged mode 
i indicates whether interrupts are inhibited 
s indicates the arithmetic status: 
 if f is zero, bit E indicates fixed–point arithmetic overflow, and bit F indicates arithmetic carry 
 if f is one, bits E and F jointly encode one of four possibilities: 

00 could not convert from floating point to fixed point (FIXI or FIXF) 
01 floating point overflow 
10 floating point underflow 
11 division by zero 

Since many of these bits are security–sensitive, both MCTA and ATPC were privileged instructions. 
Note that it was possible for a process to run in privileged mode and/or with interrupts inhibited, if the corresponding 
bits in its C register were asserted.  
 

5. SOFTWARE AND SAMPLE PROGRAMS 
Sadly, no source code for ICS software has survived, and almost no documentation. What little remains is listed in the 
following. 

ICS SOFTWARE 
As delivered to GUCS, the ALP/3 was provided with a basic suite of paper–tape based software, consisting of: a text 
editor; a 2–pass Usercode macro–assembler that generated relocatable object code; a 2–pass relocator and linkage–
editor, called Integrator; and a program loader. Using these programs tried the patience: source code on paper tape had 
to be read into the assembler, respooled, and read again; assembly output tapes were fed twice through the Integrator in 
the same manner; and the integrated object program had to be respooled before being read into core by the loader.  

TOPSY 
At GUCS the first priority was to exploit the disk drive to do away with as much paper tape as possible. TOPSY was a 
minuscule subset of the intended microkernel Executive that allowed source code, object modules and loadable 
programs to be held in designated cylinders of the disk. A certain amount of manual intervention was required, at the 

0 1 2 3 4 5 6 7 8 9 A B C D E F 
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points where paper tapes were formerly respooled, but by redirecting I/O streams to the disc TOPSY hugely 
increased the convenience and celerity of program development. That made it practical for Pascal compiler 
development to be self-hosted on the Multum. 

PASCAL COMPILER AND PUMA 
The Pascal compiler was half–bootstrapped from the #XPAC compiler for the 1900 Series [1], using an ICL 1904A 
running GEORGE 3 at Strathclyde University to retarget the code generators, and then to make the retargeted compiler 
compile itself. The result was a very long roll of paper tape, output by the 1900 and carried to the Multum.  
 
It represented the compiler logic as a series of calls on Usercode macros. The latter implemented pseudo–instructions 
that were more compact, and more convenient for the compiler, than plain Usercode. Nevertheless, it was a lot of text, 
and it took a long time to assemble on the Multum, even with TOPSY. The bottleneck was the macro expansion process, 
which was glacially slow, to the point that assembling the compiler took most of a working day. This was perhaps 
tolerable for once–a–week compiler updates from the 1904A, but unacceptable for Pascal programs that needed to be 
amended, compiled and tested several times a day on the Multum itself. 
 
A partial solution was provided by PUMA, the Pascal Usercode Macro Assembler. This was a load–and–go assembler 
written in Multum Pascal, that generated machine code directly, and in a single pass, as fast as the compiler’s output 
could be read. PUMA reduced the time taken to assemble and load a simple Pascal program, from many minutes to a 
few seconds. 

THE  GUCS MICROKERNEL EXECUTIVE 
The main design principle of the GUCS microkernel Executive was that it should implement as much functionality as 
possible in virtual machines—that is, in processes—rather than in a monolithic supervisor. First–level interrupt 
handling, time slicing of the BIOP and the ALP, domain management, and interprocess communication (by message 
passing and segment sharing), were the sole work of the microkernel.  
 
Some interrupts—for example device interrupts signalling the end of a BIOP time slice—were fully handled within the 
microkernel. Others—for example those signalling the completion of an entire transfer request—were handed off to 
interested processes in the form of messages from the microkernel. A very low–overhead message passing mechanism 
was designed to make this practicable. Device management, program loading, segment management, swapping, 
scheduling, filing systems, and job management, were all intended to be the work of privileged and/or trusted processes 
written in Pascal. In practice only the microkernel, a hand-crafted set of device driver processes, and a test workload, 
reached completion before the ALP/3 became unserviceable. 
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FURTHER READING 
The following can be viewed at: www.findlayw.plus.com/Multum/ 

PUBLICATIONS OF GLASGOW UNIVERSITY COMPUTING SCIENCE DEPARTMENT  
Multum Standard Function Memos: 
• #1: A Standard Interface Convention for the ‘Mathematical’ Functions; W. Findlay; 11/5/1973. 

Multum Pascal Compiler Memos: 
• #1: A Run Time Environment for Multum Pascal; W. Findlay; 20/12/1972. 
• #2: Amendments to the Run Time Environment; W. Findlay; 21/1/1973. 
• #5: Code Generation; J. Cavouras; July 1973. 

Multum Operating System Memos: 
• #1: An Operating System for the Multum: Outline Specification; W. Findlay; 1972. 
• #2: Software Implementation Languages for the Multum Computer; J.W. Patterson; 1972. 
• #3: Outline Specification of a Virtual I/O System; W. Findlay; 17/8/1972. 
• #4: Draft Specification of the Backing Store System; W. Findlay; 1/11/1972. 
• #5: Introduction to the Virtual I/O System; W. Findlay; January 1973. {lost?} 
• #6: Revised Outline Specification; W. Findlay; March 1973. 
• #7: VIOS Implementation Description; W. Findlay; 16/7/1973. 

Multum Hardware Memos: 
• #1: Proposals for an Interval Timer in the ICS Multum Computer; W. Findlay; 20/6/1972. 
• #2: Fixed and Floating Point Arithmetic; J.E. Jeacocke and W. Findlay; 17/8/1972. 
• #3: Arithmetic on the ICS Multum; J.E. Jeacocke and W. Findlay; 15/9/1972. 

PUBLICATIONS OF INFORMATION COMPUTER SYSTEMS LTD.  
• User Specification: Executive–ALP 1. 
• Usercode Language; C.A. Ashurst; 17/11/1971. 
• Programmable Timer; D.T. Yardy; 9/10/1972. 
• Specification of the ALP Type 3; D. Illing; 8/3/1973. 
 


