
1

 Version 5: September 2024.

Computer Technology Ltd. and the Modular One.

Contents.

 1. Introduction and CTL company history. pages 1 – 2.
 2. Modular One deliveries and anecdotes. pages 2 – 9.
 3. Systems Architecture and Instruction set pages 10 – 26
 4. Software page 27

1. Introduction and CTL company history.
Computer Technology (later Information Technology) was started in 1965 by Iann
Barron together with a group of computer engineers from Elliott Automation. The
immediate reason for the company’s foundation was rumours of a new 16-bit
computer being considered by the Digital Equipment Corporation, and later marketed
in 1970 as the DEC PDP11. Iann Barron, recounting the story many years later,
believed that this was an ideal computer for Elliotts to manufacture and said that he
had ‘secured the offer of the European licence’; however the management of Elliotts
were not interested. While it might have been sensible for Elliotts as an established
company to market the PDP11, this was not a practicable proposition for a startup
and so, once he had left Elliott Automation, Iann Barron’s aim was to create a more
powerful computer which would address the same market as the PDP11 – this was
to become known as the minicomputer market.

Financing was secured remarkably quickly, the two initial backers being Arnaud de
Vitry, who had been the principal backer of Digital Equipment, and Robert Maxwell,
who had a vision of computers as the future of publishing. Unfortunately, Maxwell
proved a very uncertain source of funds, which led to many difficulties for Computer
Technology Ltd.

The concept of the Modular One was created around a number of ideas:
 ● The use of integrated circuits to build a computer. In particular the use of fast
 emitter coupled logic to gain a performance advantage. Modular One was

one of the first computers to use integrated circuits and possibly the first to
use emitter coupled logic integrated circuits.

 ● The use of a high performance core store with a 1 microsecond cycle time.
 ● A 16 bit word – at that time the fashion was for 12 or 24 bits, which was

strongly preferred by the British establishment (for example, at Elliotts).
 ● A standardised interface to connect all the modules of the computer, enabling
 multiple processors, modular storage and flexible peripheral configurations.
 ● Multiprogramming, with relocatable program and data spaces and some

degree of memory protection.
 ● Program and peripheral priority systems, with fast program switching.
 ● Multiprogramming operating system.

2

Work on the design was started in August 1965 in a terraced house in Luton. The
first computer was delivered on schedule about three years later, to a company in
Fenchurch Street, London. By this time Computer Technology Ltd. was operating
from a Norman Foster designed factory in Hemel Hempstead. The Modular One met
all Iann Barron’s initial design objectives.

The main application areas were universities for research projects, the National
Health Service, the MRC, CERN, instrumentation automation such as NMRs and a
variety of advanced research applications, particularly multiple processors. More
information on deliveries and dates is given in Section 2 below.

When he started the company, Iann Barron was helped by Tom Margerison (the
founder of the New Scientist) who subsequently became Chairman of Computer
Technology Ltd. Margerison changed the name to Information Technology. Iann
Barron recalls that the company never had the money to develop a successor to the
Modular One, so the computers gradually became non competitive and the company
declined. Iann Barron left the company in 1973. It was eventually bought by ACT
(Apricot) in January 1990 which was then acquired by Mitsubishi.

At the time of writing (2018) two Modular One computers are still known to exist,
though neither is in regular working order. One system is in storage at the Museum
of Science and Industry in Manchester. The other, an ex-NPL system used on the
NPL packet switching network and the Scrapbook project (see video links here
http://www.npl.co.uk/mathematics-scientific-computing/history-of-computing/), was
bought in 1980 by Patrick Sugrue together with two teletypes and a high speed
paper tape reader. It was used as a home computer up to 1982. The current plan is
to restore this machine – see: http://redhawksys.com/index.htm

2. CTL Modular One deliveries and anecdotes about the sites.
Much of this delivery list has been compiled by Mike Gibbons
evandmike@hotmail.com . After working at Elliott Brothers at Borehamwood from
1962 to 1968, Mike Gibbons joined Computer Technology Ltd. at Hemel Hempstead
in 1968. He was an Installation and Commissioning Engineer until 1971, when he
moved to the Systems Test Department. In 1974 he set up a new group called
TEAM (Test Engineering And Methods) to introduce new products from design into
manufacturing. Mike left CTL in 1992.

The tabular list of deliveries given below is only approximate, since the official
company records have not yet come to light. Additionally, Reference [2.1] gives 37
more deliveries without dates. The entries in the Table are all for Modular One
computers, of which well over a thousand are believed to have been delivered. The
CTL Satellite One computer is not included in the list. This machine was a basic
standard Modular One but with more or less a set configuration which included a
tape reader and tape punch and Data Products line printer and minimum of one
VDU. The Satellite One was very popular and sold in large numbers throughout the
UK after 1972.

3

Background notes on some of the installations are given after the Table.

Delivery
date

No. of
Systems

Customer/location Comments

July 1968 1 International Data Highways (IDH),
Clerkenwell Rd. and Finsbury Square,
London EC2

See Note 1. More
IDH
installations followed.

Oct 1968 1 Cambridge University Language Research
Unit

Margaret Masterman

Nov 1968 1 Manchester University Dept of Psychology Arthur Reader
1968/69 1 Oxford University Department of

Mathematics

1969 1 Oxford University, Science Labs (?)
1969 1 + ? Warwick University Dept of Computer

Science
Colin Whitby-
Strevens. See Note
2a.

1969 2 Cambridge University Mathematical
Laboratory

Roger Needham.
See Note 2b.

1969 1 Leeds University
1969 1 Essex University
1969 1 Sussex University Department of

Mathematics

1969 1 Autonomics Ltd.
1969 1 Dundee Royal Infirmary See Note 3.
1969? 1 MRC Laboratory, New Addenbrookes’

Hospital,
Cambridge.

1969 1 Bristol University Medical School See Note 4.
1969 1 Durham University School of Engineering

Science
See Note 5.

1969 1 Dental practice in London See Note 6.
1969 1 (later

moved)
Medical Research Council, London See Note 7.

1969 1 (later
moved)

Medical Research Council, Manchester See Note 7.

1969 1 Atomic Weapons Research Establishment,
Aldermaston

1969 1 UK Atomic Energy Authority, Culham
1969 &
1970

2 + ? International Data Highways, Finsbury
Square

See Note 1.

1969/70 1 Oxford University Dept of English Language
1970 1 + ? National Physical Laboratory, Teddington See Note 8.
1970 1 (later

moved)
Medical Research Council, London See Note 7.

1970 1 (later
moved)

Medical Research Council, Manchester See Note 7.

1970 1 John Radcliffe Hospital, Oxford
1970 1 Aberystwyth University
1970 1 Royal Victoria Hospital Belfast
Before
1971

1 + ? RAF Marham, Norfolk See Notes 9.

4

Before
1971

1 + ? RAF Special Projects (Nimrods). See Notes 10.

Before
1971

1 MOD Royal Military Police, Euston Rd.,
London.

See Note 11.

1971 1 (later
moved)

Medical Research Council, London See Note 7.

1971 1 Sheffield Hallam University
Oct 1971 1 Computing Science, Glasgow University
Post 1971 1 Royal Navy submarine See Notes 12.
Post 1971 1 European Space Agency, Holland
May 1972 1 Edinburgh Royal Infirmary See Note 7.
Post 1972 1 University College Hospital, London
Post 1972 1 Aberdeen Hospital
? 1 Dept. of Health & Social Security (DHSS)

Blackpool
See Note 13.

? 1 DHSS Long Benton, North Tyneside See Note 13.
? 440 DHSS offices throughout the UK See Note 13
? 1 Supreme Headquarters Allied Powers

Europe (SHAPE) Headquarters, Stanmore,
Middlesex

1971 - 74 several The European Space Research and
Technology Centre (ESTEC), Noordwijk, the
Netherlands.

See Note 14.

Post 1974 many Metropolitan Police Project 880 See Note 15
1972
onwards

many ICL Kidsgrove See Note 16

1970 – 75 Many CERN, Geneva See Note 17
1970 – 75 1 Computer Aided Design Centre, Cambridge. See Note 20
1975 1 METEOSAT See Note 18
1976 1 GEOSTAT See Note 19

Additionally, Reference [2.1] gives 37 more Modular One deliveries but without
dates. These, in the order quoted in Reference 2.1, are:

Conservatoire National des Arts et Metiers, Paris
Various Gas Boards (six Boards in all)
Southampton University
Science Research Council
Smiths industries
UKAEA
Loughborough University
Rutherford High Energy Lab
Brunel University
Cable & Wireless Ltd
Plessey Radar
Royal Radar Establishment
Imperial College
P L Hunter
Joseph Lucas Ltd
Signal Research & Development Establishment
Institute of Computer Science

5

Reading University
Cranfield Institute of Technology
Haden Carrier Ltd
Central Electricity Generating Board
Edinburgh Regional Computing Centre
Maryfield Hospital Dundee
Westfield College
The London Hospital
Department of Trade & Industry
Hawker Siddeley Aviation Ltd
Liverpool University
Ecodata (Cable & Wireless)
Strathclyde University
The City University
Surrey University

Notes on the Table.
1. The first system, delivered to Clerkenwell Road, was considered to be a CTL Beta
site. Installed in dedicated air conditioned computer room in the basement of the
building, followed by at least two more Modular Ones in subsequent years. The initial
system was small with around four modules but then later expanded with more
memory. The main system was eventually very large and was fitted with the new
Burroughs B5500 1Mbyte fast disc, approximately 36” diameter spinning on the
vertical plane with one head per track.

2(a). One of the first systems to have a Universal Interface which allowed users to
design and implement their own interface. This Warwick system was connected to
an NCR-Elliott 4120 in the Computer Room on the floor immediately above the
Modular One. The fact that Mike Gibbons had worked on 4120 and 4130 computers
at Elliotts was of some help in getting the connection working correctly. Mike
remembers that Warwick was of the friendliest sites to visit.
Andrew Herbert adds: When I saw at least one Modular One system at Warwick
University systems in late 1974 they were used by Colin Whitby-Strevens to support
operating systems, distributed systems and computer network research. As I recall
his group mostly programmed in BCPL and wrote their own operating system for the
Modular One.

2(b). Andrew Herbert describes the Cambridge activity as follows. In 1975 there
were two Modular Ones in use. The larger was principally used to support a student
FORTRAN Teaching System on behalf of the University Computing Service; the
smaller was used as a front-end processor for the CAP research computer. (The
CAP project on memory protection ran from 1970 to 1977; see
https://en.wikipedia.org/wiki/CAP_computer).

The FORTRAN Teaching System machine had a fixed disc used for swapping, an
exchangeable disc for the user file system, a line printer, paper tape reader and
punch and operator’s console (an ASR33 teleprinter). In a separate building there
was a classroom room with a number (20?) of KSR33 teletypes connected to the
Modular One….This machine also acted as a line printer and paper tape punch

6

outstation for the IBM 370/165 serving the academic side of the Computer
Laboratory.

The CAP front-end processor was a smaller machine physically but also with fixed
disc, exchangeable disc, line printer, paper tape reader and punch, operator’s
console and a multiplexor for up to four KSR33 teletypes. It also had a custom
hardware interface to the CAP in the form of a bi-directional parallel channel.

On both machines the fixed disc was a rebadged Burroughs device, 500K (or
1Mbyte?) 32 bit words capacity, and used for virtual memory swapping. The disc
had one vane and 200 heads. The exchangeable disc, was a rebadged CDC device,
capacity 7,000K 32 bit words, and held a user file system. The discs had 11 vanes
with 20 heads. Each vane contained 200 cylinders, each comprised of 20 tracks.
Each track was divided into 14 pages of 256 16 bit words. The heads were operated
hydraulically.

The CAP Modular One had 16K of 16 bit word store. The FORTRAN system had a
larger memory and occupied more cabinets than the CAP Modular One. The CAP
Modular One ran the E2 Executive. The FORTRAN Teaching System ran the more
powerful E4 Executive, a multi-tasking operating system…. Once or twice a year we
would back up both systems by taking their exchangeable discs from the Computer
Laboratory to another Modular One installation at the MRC Laboratory on the New
Addenbrookes’ Hospital site about 2 miles away.

The CAP front-end Modular One was decommissioned around 1978 when CAP was
converted to use the then newly invented Cambridge Ring Local Area Network to
access file, print and terminal servers. If I remember correctly the FORTRAN
Teaching System was still in service when I left the Cambridge Computer Lab in
1985.

3. This system was housed in the Medical Research Laboratory, which contained
numerous jars with various body parts immersed in fluid. The computer was actually
first
delivered and installed at Edinburgh University for a day’s demonstration to potential
Northern and Scottish customers. It was then stripped down and re-packed for
delivery and installation in Dundee. The whole process spanned five days, involving
departure from Hemel Hempstead early on a Monday morning in a hired Transit van,
Tuesday’s Sales Demonstration, Wednesday’s transport and re-installation at
Dundee, Thursday’s Acceptance Trials and Friday’s confirmation meeting with
satisfied users and return to Hemel Hempstead. Mike Gibbons and Chris Purkis
were responsible for this demanding sequence.

4. This site was involved with medical training and research. The research, under
Tom Williams, included the investigation of the brains of live cats.

5. This site was the first Modular One installation to have Analogue-to-Digital/Digital-
to- Analogue converters attached.

6. This large private Dental Practice was close to Harley Street. The Modular One
system was installed in the front window, in plain view from the street. It was one of

7

the first CTL systems to be delivered with a paper tape punch unit manufactured by
the Tally Corporation.

7. This system was housed in a new Computer Building attached to the Hospital.
It was the largest and most complex system ever installed by CTL. It re-used all the
MRC Modular Ones previously installed in MRC sites in London and Manchester
plus some new systems from the factory at Hemel Hempstead. The final MRC
Edinburgh site included at least eight processor modules (type 1.11) interconnected,
multiple storage consisting of type 1.21 core store and type 1.22 semiconductor
memory. The peripheral equipment included type 1.32 GNT Tape Readers, type
1.33 Tally Punches, type 1.52 Disk Controllers with multiple 80 Mbyte, 300Mbyte
single and double stacked disk drives (both hydraulic and voice coil actuated), Data
Products Line Printers, CAD / ADC Controllers and type 1.09 9-Track Magnetic Tape
Drives.

The main purpose of the MRC’s Edinburgh Modular One system was to carry out
testing of amniotic fluid taken from wombs of pregnant women throughout UK. The
intention was to replace a manual process involving a number of women in a
laboratory testing samples under a microscope and looking for errors/faults/defects
in chromosomes. Sadly the computer system never worked satisfactorily and it was
later used for Medical Research, Accounts and Patient Records. On a more positive
note, more NHS installations were to come. Indeed, the Modular One became for a
time the standard NHS laboratory computer.

The huge MRC Edinburgh complex was installed by Mike Gibbons (Lead Engineer)
and Alfie Best. They remember that the CTL lorry driver Alec did a daily round trip
from Hemel Hempstead to Edinburgh for several days, delivering equipment; on
each journey northwards the 7 ton Ford lorry was loaded to the roof.

Mike and Alfie remember that the Edinburgh computer room was brand new and
equipped with smoke and gas sensors. “One day while working under the false floor
installing cabling, a serious smell became evident which set off the fire alarms. We
left the room and sat outside, whilst several Fire Engines appeared from all over
Edinburgh. The firemen soon identified the Computer Room as the location of the
alarm, so we were promptly accused of smoking in the Computer Room! Having
pointed out that we were not smoking and that there was still a serious smell in the
room, the firemen made a further check and declared that the drain cover for the
main sewer had lifted due to several bits of building debris becoming lodged in the
pipe”.

8. The Modular One at NPL was primarily used for used for software research,
particularly for the Scrapbook project on information storage, retrieval and sharing –
see https://www.youtube.com/watch?v=QqB0w1FkR3o Scrapbook involved a
messaging system which, in due course, used NPL’s pioneering 1.5 Mbps Packet
Switching network – see: https://www.youtube.com/watch?v=tT4AaelwvV4

After NPL had finished with its Modular One, the computer was acquired in 1980 by
Patrick Sugrue of Redhawk Systems, Dorchester, Dorset. Patrick has been
restoring the machine to working order – see:
http://redhawksys.com/index_files/Page627.htm

8

9. Mike Gibbons remembers that systems for Marham were modified by RAF
Engineers so that all contacts and the complete core of the core store were coated in
oil supplied and used by RAF. Any equipment sent to this site was not re-usable by
CTL so, if returned to Hemel Hempstead, any spares were scrapped.

10. The system was installed in special racking as specified by the RAF and
delivered to an RAF site for installation in NIMROD aircraft. The computer(s) were
maintained by RAF personnel by bulk part exchanges, but later serviced by CTL
engineers due to the cost of repairs and high failure rates under service conditions.

11. This site was situated in Euston Road, London, protected by armed Military
Police. The Modular One was used at the time of Irish (IRA) crisis. It was one of the
first CTL installations to have 9 track reel to reel tape drives installed. Mike Gibbons
remembers that he was subjected to a full security check of all his equipment and
tools whenever he entered the building, due to the high security situation. “The door
of the computer room was 4-inch solid oak. You were escorted everywhere. If you
wanted to go to the lavatory you had to leave the toilet door open with the guard
standing near you”.

12. The Modular One system was modified to fit into special racking for installation
in a Royal Navy submarine.

13. An initial system was delivered to both the Blackpool and Long Benton sites, for
an assessment of central records for DHSS. These were followed by a few more
systems at both sites. Based on this experience, a special DHSS Modular One
computer was designed around TTL 2901 bit- sliced processors. Mike Gibbons was
the project leader. He remembers that, during manufacture, bar codes were used for
the first time for part/serial numbers. An IBM PC with custom-built control box was
used as a central station, enabling a senior wireman (Chris Silver) to assemble the
system and use the PC to control the tests and issue instructions. This led to lower
labour costs at CTL and improved fault finding. Once manufactured, one of these
special Modular One systems went to each of the 440 DHSS offices throughout the
UK.

14. A number of Modular One systems were delivered to ESTEC in Holland, who
then shipped them to the Guiana Space Centre at Kourou in French Guiana on the
north Atlantic coast of South America. At Kourou, satellites were launched using the
French Ariane Rocket as the launch vehicle.

15. Mike Gibbons remembers that this was an £880K project which involved the
delivery of a large number of systems to the Metropolitan Police. One substantial
Modular One system was installed at Scotland Yard, housed in a lead lined room on
the same floor as the Flying Squad, sometimes called the Central Robbery Squad or
The Sweeney.

16. Numerous Modular One systems were delivered to ICL Kidsgrove over a period,
at the rate of at least five systems every fortnight. They were specially configured for
ICL, painted in ICL colours and used as Front-End Processors to both 1900 and
2900 mainframes.

9

They were initially badged as ICL 7905s. At some point in the late 1970s, a revised
version of the hardware was released by CTL (this may or may not have been a
cover story to disguise a price change) and assumed the 7906 designation. At the
same time another version allowing much less user flexibility was announced at the
7904. This was intended to cover the same ground as the (ICL-designed) 7903 aka
PF56 which was by then at the end of its sales life. As front-end communications
processors, the Modular Ones in some cases allowed in excess of 100 terminals to
be connected to an ICL mainframe system. Delivery to end-users and maintenance
was carried out by ICL personnel.

17. At least 15 Modular One systems were delivered to CERN as part of their
Scientific Programme, between 1970 and 1975. All systems were of the same
configuration and included Data Products 600 LPM Line printers. Many (all?) of the
CTL computers were used as Remote Input Output stations for CERN’s CDC 7600
computer.

18. A Modular One system in custom racking was delivered to UMETSAT (European
Organisation for the Exploitation of Meteorological Satellites) in Darmstadt.
EUMETSAT operates the Meteosat series of geostationary weather satellites.

19. GEOSAT (GEOdetic SATellite) was a US Navy programme for oceanographic
observations. The first GEOSAT satellite was launched in 1985. It is not known what
part a Modular One system played in the oceanographic programme, or where the
computer was sited – though it was first delivered to Holland (ESTEC).

20. Other installations for which details are sparse.
(a). A CTL Modular One computer with a half-inch magnetic tape system was
connected to the CAD Centre’s Atlas 2 computer at Madingley Road Cambridge in
the early 1970s.

(b). The Department of Engineering Mathematics at Queens University, Belfast, had
a Modular One running an interactive system with dumb terminals.

(c). There may have been a Modular One in Dublin at the government’s Central Data
Processing Services (CDPS).

Information believed to be correct as of March 2019.

Reference.
2.1. Modular One. 25-page glossy brochure with art-work. Publication date not given
but deduce it was 1971 or 1972.

10

3. CTL Modular One computer: Systems Architecture and Instruction set.

Contents. Page
3.1. Systems architecture. 10
 3.1.1. Overall system configuration. 10
 3.1.2. The Processor Interface. 12
 3.1.3. Executive. 12
 3.1.4. Operator’s switches. 13
3.2. Registers, instruction format and addressing. 13
 3.2.1. Number representation. 13
 3.2.2. Central registers. 13
 3.2.3. Instruction format and addressing modes. 14
 3.2.4. Direct and Indirect Addressing. 14
 3.2.5. Further addressing details: segments, context & peripherals. 15
 3.2.6. Program Segments. 15
 3.2.7. Program Contexts. 16
 3.2.8. Communication with Peripherals 16
3.3. Interrupts, Special State and Normal State. 16
 3.3.1. Scene-setting. 16
 3.3.2. External Interrupts. 17
 3.3.3. Hesitations. 17
 3.3.4. Software Interrupts 17
 3.3.5. Error Conditions 17
3.4. Instruction set. 17
 3.4.1. Overall listing. 17
 3.4.2. Instruction times. 18
Appendix 3: further details of the complex instructions. 19
 A3.1.1 Function 24, Shift. 19
 A3.1.2. Function 25, Inter-register operations. 19
 A3.1.3. Function 26, Conditional Skip. 21
 A3.1.4. Function 27. 23
 A3.1.5. Function 28. 24
 A3.1.6. Function 29. 24
 A3.1.7. Function 30. 25

References for section 3. 26

3.1. Systems architecture.

3.1.1. Overall system configuration.
A Modular One system consists of a combination of processor units, store units and
peripherals. These units can be ‘freely combined’ although each store is only
generally accessible to one processor unless a special store switching system is
introduced. Besides the usual Arithmetic Unit and program-accessible central
registers, the Processor cabinet contains a Communications Multiplexor and space
for up to 24K of 16-bit words of integral fast (0.75 microsecond cycle time) core
store. Later, a semiconductor store was made available. Each processor is in fact
capable of addressing 56K words of direct store, which consists of 24K words of
integral store and the remainder (if required) being made up of one or more external

11

store modules. The total range of addresses is actually divided between those
referring to read/write memory locations and those referring to peripheral devices (eg
Input/Output equipment). See section 3.2.5 below for more addressing details. All
the (external) store modules operate independently, allowing accesses to be
interleaved.

Computer Technology Ltd. (CTL) produced many versions of processors, storage
modules and peripheral equipments during the life of the conpany. The notes below
refer mainly to the standard type 1.14 processor. This operates from a single phase
240 V AC ring main and consumes a maximum of 1 KVA when all options are
included.

 A basic Modular One system with a paper tape reader
and an ASR33 teletype for simple I/O.

Much larger Modular One configurations existed, as may be judged from the notes
on Deliveries and Applications in section 2 of the Modular One description.

 A model of a large Modular One installation.

12

Amongst the additional equipment available for large Modular One installations are
the following [Reference 3.4]:

 Paper tape readers of speeds up to 1,000 characters/sec.
 Paper tape punches with speeds up to 120 characters/sec.
 80-column card readers of speeds up to 1,000 cards/minute,
 Lineprinters, either 80-column or 120-column printing, either 64 or 96
 character set, with speeds up to 1,000 lines/minute,
 Fast-access fixed discs, capacity up to 256Kwords, average access time
 of 8.45 millisec.
 Exchangeable disc stores, capacity 14Mwords per pack, average access time

 of 13.6 millisecs
 Magnetic tape transports,7-track or 9-track, with transfer speeds of up to

 36 Kcharacters/ssec.

3.1.2. The Processor Interface.
Connection between modules in a Modular One system is via the Standard Modular
One System Interface, which physically consists of two connectors, each with 33
pins. The type 1.14 Modular One processor has nine ports: one dedicated peripheral
port, one dedicated to integral store, and seven codable for store or peripheral
channels.

Incoming demands to a particular processor may be either hesitations or interrupts.
When answering these the processor is said to act in slave mode. When the
processor itself initiates an interface transfer it is said to act in master mode.
Processor-initiated demands are routed to the correct store or peripheral channel by
means of a channel address. Incoming demands are detected by means of a scan
which samples the peripheral channels in priority order. Global inhibition of either
interrupts or hesitations, or both, may be set by use of a special state
Instruction (see section 3 below). A similar instruction is available for the selective
rejection of individual interrupts. Both special and normal state code (provided that it
does not violate its segment bounds) can set channel lockout. The Modular One
concepts of nrmal state and special state are defined more fully in section 3.3.

In summary, each processor in a Modular One system can be in one of three modes
when communicating with other modules:
 Master mode: direct reference to other modules is allowed by program instructions.
 Slave in Interrupt mode: interrupts allowed from other modules.
 Slave in Hesitation mode: transfers allowed between peripherals and direct store.

3.1.3. Executive.
The type 1.14 processor is designed to operate with an Executive program, which
contains facilities for the control of peripheral devices, for organising and
allocating storage and processing time, for inter-program communications, for
switching from one program to another and for dealing with the power on/off
interrupts and error conditions. The Executive also contains service routines,
accessible by software interrupts, which enhance the hardware facilities. See

13

section 1.3 below for more. A user-program in Normal Mode may use Function 30 to
make a call to the Executive – see Appendix 3.1.7.

The X, Y and Z memory segmentation registers, together with the two execution
states (Normal State and the non-interruptible privileged Special State) mean that
the Executive acts as a self-protecting Operating System kernel.

3.1.4. Operator’s switches.
Each procesor in a Modular One system has six On/Off switches: Power, Remote,
On-line, Multiplexer, Operational, Load.

3.2.Registers, the Instruction set and timings.

3.2.1. Number representation.
The Modular One processor uses 16-bit words, which can represent either signed or
unsigned bnary integers. The range of signed integers is thus -32,768 to + 32,767
and the range of unsigned numbers is 0 to 65,535. All addresses should be regarded
as 16 bit positive integers, to word boundaries.

Double-length numbers occupy two 16-bit words, giving a range of -1,073,774,592 to
+ 1,073,741,823. The double length accumulator, [B , A] , has register B as its more
significant half and register A as its less significant half, and holds an integer of value
B * 2 15 + A. The normal form of a double length integer, for use in arithmetic
operations, is with the most-significant digit of A equal to zero.

3.2.2. Central registers.
There are eight principal (programmer-accessible) registers:
 A 16 bits, main accumulator
 B 16 bits, index register: auxiliary accumulator
 M 16 bits, index register with indirect addressing: auxiliary accumulator
 P 13 bits, program pointer
 W 16 bits, local workspace stack pointer.
 X 16-bit relocation register. Holds a pair of 8-bit values (lower and upper limits).
 Y 16-bit relocation register. Holds a pair of 8-bit values (lower and upper limits).
 Z 16-bit relocation register, Holds a pair of 8-bit values (lower and upper limits).

Registers B and A together form a 32-bit double-length accumulator [B,A]. The
interpretation of address-information in registers W, X, Y and Z is given below.
Other registers such as overflow indicators will be described later. The symbol Q in
the Modular One manuals is used to denote an operand – see below under
Addressing modes. Other symbols such as E, F, G, H, J, in the manuals do not
denote physical registers. Rather, they are used to describe sub-fields in registers
holding instructions, addresses, etc.

During arithmetic operations, registers A, B and M normally hold 16 bit signed
numbers. They are provided with overflow indicators; Aovr , Bovr , and Movr
respectively (though Movr cannot occur when a special state program is running).

14

Values held in A, B and M can each be tested for being less that zero, equal to zero,
greater than zero, or arithmetic overflow. The B overflow indicator is set if the result
of a multiply or shift lies outside the double length arithmetic range, or if the result of
a divide overflows. Both the 16 bit W register and 13 bit P register hold positive
numbers. Neither is provided with an overflow indicator.

3.2.3. Instruction format and addressing modes.
Instructions are 16 bits long, arranged as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 E F G

E 3 bits primary address mode. Specifies which segment X, Y or Z is to
be accessed and how the base address is to be constructed.
Segments are described in section 3.2.6.
F 5 bits function (ie op code).
G 8 bits offset. This is used either a a Literal or in the construction of the
store address by adding it to the base address.

The E bits are interpreted differently, depending upon whether the processor is in
Normal Sate or Special State. These program states, which relate to the handling of
interrupts, are further described in section 3.3. The E bit possibilities are:

E value Addressing mode Address construction,

normal state
Addresss construction,
special state

0 Literal G G
1 Direct P + G P + G
2 Direct G G
3 Indirect G P + G
4 Direct B + G B + G
5 Direct B + G B + G
6 Direct W + G W + G
7 Indirect W + G W + G

3.2.4. Direct and Indirect Addressing.
Except for the literal mode, in which G is itself used as the operand for the function, a
primary address is constructed from the contents of various registers as defined by
the mode, with G as an offset. In the case of direct modes this address is that of the
operand for the function. With indirect modes the primary address is used to fetch a
secondary word from store, which then defines the operand address.

The format of the secondary word for indirect addressing is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 H J

H 3 bits secondary address mode
J 13 bits base address (for data).

15

A secondary address is constructed from the contents of various registers as defined
by the mode, with J as a data base address. This secondary address is always that
of the operand for the function, i.e. there is only single-stage indirect addressing.

H value Address construction,

normal state
Addresss construction,
special state

0 M + J M + J
1 M + J M + J
2 J J
3 J P +- J
4 W + J M + J
5 W + J M + J
6 B + J B + J
7 B + J B + J

3.2.5. Further addressing details: segments, context and peripherals.
The processor refers to both storage and peripherals by 16 bit addresses. These are
considered, in address arithmetic, to be positive integers. They are more often
written by the programmer as <p, l> where p is the page and l the line number,
defined as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Page Line

There are thus 256 pages in the complete address range, each of 256 lines.
Addresses in the range <0, 0> to <223, 255> (ie numerically 0 to 57,343) are taken
to refer to main memory (ie direct storage), and those in the range <224, 0> to <255,
255> (ie numerically 57,344 to 65,535) to peripheral devices.

3.2.6. Program Segments.
Every normal state program is allocated three segments, X, Y and Z. Each of these
defines an address range to be used by the program, which may include direct
storage or peripheral devices. The X (program) segment holds instructions and
constants, and any direct store in it is read only. The Y (data) segment is used as a
data area and as local workspace. Local workspace is the area in the Y segment to
which W points – ie W acts as a stack pointer. The Z (file) segment is generally used
to communicate with other programs and peripherals.

The position and extent of each segment is defined by a segment relocation register
(the X, Y or Z register), which has the format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 Segment first page addr Segment last page addr

16

Various address modes are provided to allow access to these segments. Also
normal state code is fetched from store addresses that lie in the current X segment.
All such addressing is relative to the appropriate segment first page address, and the
hardware checks that the actual address constructed lies within the address range
allocated to that segment. If the protection system detects an unacceptable address
it generates a violation interrupt.

The settings of the X, Y and Z registers are changed via function 29 (see Appendix
A3.1.6).

3.2.7. Program Contexts.
The condition of a normal state program at any given time, is characterised by its
working context: { [M o v r , B o v r , A o v r , P] , A, B, M } and its relocation context:
(W,X,Y,Z), together with the actual segments themselves.

Note that the three overflow indicators (M o v r < B0vr, and Aovr) are combined with the
thirteen bits of the P register to form the first word of the working context. See
Section 2.2 for more on overflow indicators.

Instructions are available (eg functions 29 and 30, as described in the Appendix)
which exchange the current working context with one held in store. This provides
powerful sub-programming facilities.

3.2.8. Communication with Peripherals
A peripheral device may only be accessed when fetching the operand for a function,
though there is no restriction on which function is used. Thus arithmetic may be
performed directly with such an operand, without the need to store it first or to obey
any other instruction. Both store modules and peripheral devices may accept or
reject requests for access. In the case of store rejection, this is considered an error
and, as such, causes an error interrupt. It is to be expected, however, that peripheral
devices will sometimes reject a request. To allow for this possibility, the following
procedure is adopted. If the request is accepted, then the function is performed
normally but the next instruction in sequence is skipped. If the request is rejected,
then the function is not performed. Instead, a rejection qualifier is loaded into the B
register and the next instruction in sequence is executed.

3.3. Interrupts, Special State and Normal State.

3.3.1. Scene-setting.
The Processor can operate in one of two states, normal or special. In general, all
user programs will operate in normal state. The processor enters special state only
as a result of an interrupt, which may originate externally or internally. Special state
code has priviledged access to all storage locations and all peripherals. Another
difference between special and normal state is that whereas normal state is re-
entrant, special state is not. This allows special state code to be entered and left
efficiently, so that interrupts can be serviced at high speed. Special state code is
restricted to the first 8K of store.

17

Each special state routine is associated with one or more sets of four dedicated store
locations which hold its working context while it is inactive. In a special state working
context Mo v r is replaced by an interrupt reject indicator lr e j .

On the occurrence of an interrupt, the working context of the current normal state
program is exchanged with that stored in the locations dedicated to that interrupt.
This operation is performed entirely by the hardware. Special state routines have no
associated relocation context and cannot themselves be interrupted. They also have
privileged access to all peripheral devices and storage, and to the relocation
registers.

3.3.2. External Interrupts.
A peripheral device can interrupt the processor which automatically performs an
exchange of data words with that device, to trigger off a special state routine.
Special state code will cause interrupts from all peripheral devices to be rejected, by
setting their global inhibition, and further occurrences of one type to be rejected, by
setting an interrupt specific reject indicator.

3.3.3. Hesitations.
The processor acts as a store multiplexer to allow any of its peripheral devices to
use its facilities for accessing all of the direct storage available to the processor itself.
This is the only method by which peripherals can access internal semiconductor
store. Special state code can cause hesitations from all peripheral devices to be
rejected, by setting their global inhibition.

The effect of this depends on the characteristics of the addressed channel, which
may respond in one of the following ways:

1. Inhibit interrupts and hesitations,
2. Reject interrupts and allow hesitations,
3. Inhibit interrupts and allow hesitations.

3.3.4. Software Interrupts
A normal state program may call upon special state service routines by generating
one of 64 software interrupts available in the processor.

3.3.5. Error Conditions
The following error conditions are trapped, forcing entry to appropriate routines
dependent upon whether a normal state or a special state program was running at
the time of the error:
store rejection
invalid instruction.

18

3.4. Instruction set.
3.4.1. Overall listing.
The 32 operations are listed below. Functions 24 to 30 involve complex operations
that are best explained in detail in the Appendix.

Function
(op code)

Description Mnemonic Effect

0 ADD A ADA A := A + Q
1 SUB A SBA A := A – Q
2 LOAD A LDA A := Q
3 STORE A STA Q := A
4 ADD B ADB B := B + Q
5 SUB B SBB B := B – Q
6 LOAD B LDB B := Q
7 STORE B STB Q := B
8 ADD M ADM M := M + Q
9 SUB M SBM M := M – Q
10 LOAD M LDM M := Q
11 STORE M STM Q := M
12 ADD P ADP P := P + Q
13 SUB P SBP P := P – Q
14 LOAD P LDP P := Q
15 STORE P STP Q := P
16 ADD W ADW W := W + Q
17 SUB W SBW W := W – Q
18 LOAD W LDW W := Q
19 STORE W STW Q := W
20 MULTIPLY single MLS A := A x Q
21 MULTIPLY double MLD [B,A] := A x Q + B
22 DIVIDE DIV A := [B,A] / B
23 EXCHANGE EXC A := Q; Q := A
24 SHIFT SFT See Appendix 3.1.1
25 COPY CPY See Appendix 3.1.2
26 TEST TST See Appendix 3.1.3
27 INTERFACE CONTROL STS See Appendix 3.1.4
28 SUBROUTINE ENTRY SRE See Appendix 3.1.5
29 PROGRAM LINKAGE ENT See Appendix 3.1.6
30 EXECUTIVE CALL EXT See Appendix 3.1.7
31 INVALID - (violation)

3.4.2. Instruction times.
Initially, Modular One processors were fitted with a fast core store (0.75 microsecond
cycle time). From about 1970, semiconductor memory was installed. The type 1.14
Modular One Processor is normally used either with a type 126 semiconductor store
module or a type 127 semiconductor store module. At the time of writing (January
2023) the cycle times of these memory systems has not come to light.

Quoting from Reference 3.1, typical instruction times for sample instructions, in
microseconds, when using addressing mode 2 (direct) are:

19

Instruction Direct addressing,
type 126 store

Direct addressing,
type 127 store

ADD 1.8 2.4
MLS 3.6 4.2
MLD 3.3 3.9
DIV 5.1 5.7
Shift single-length left 1 place 1.9 2.6
Tally logical right 15 places 6.3 6.9
Function 25 logical 1.9 2.6
ENT 6.5 8.1

Appendix 3: further details of the complex instructions.

A3.1.1 Function 24, SHIFT.

Bit Bit-value Operand value Significance
0 – 3 n n Specifies the maximum number of places

to be shifted, as a binary number, n, such
that 0 < n < 15

4 0
1

0
16

Shift right
Shift left

5 0
1

0
32

Arithmetic
logical

6 & 7 0
1
2
3

0
64
128
192

Single length
Double length
Justify
Tally

8 - 15 Any - (These bits are not used)

The operand-value column, n, gives the contribution of the field towards the total
value, Q, of the operand. For example, a justify logical right shift of 6 places is
specified by an operand of:
0 = 128 + 32 + 0 + 6 = 166.

Explanation of Tally.
The Tally operation can be either a shift left or right, arithmetic or logical, depending
upon the values of operand bits 4 and 5. A Tally shift counts in register B, the
number of times the least-significant digit of A changes from 0 to a 1, or vice versa,
during n shifts. Prior to the operation, register B is cleared. Then, at each
subsequent stage of the shift, register B is incremented by 1 if the new value of the ls
digit of A is going to differ from the old.

As an example, consider A = 1100 1110 1011 1000.
If a tally arithmetic right shift of 13 places is specified, A is shifted to
A = 1111 1111 1111 1110 and the B register is set to
B = 0000 0000 0000 0110.

20

A3.1.2. Function 25, Inter-register operations (COPY).

This function provides comprehensive facilities for inter-register arithmetic and
logical operations. The detailed actions performed are specified by individual fields
within the operand, which are arranged so that the most commonly occurring
combinations can be accommodated by a literal.

The function’s operand defines :

(a) the source registers that will supply two operands, denoted in the Table below
by S and T;

(b) one of eight operations to be performed on S and T to yield a result, denoted by
R in the Table, and the result registers that will hold R.

If no registers are designated to supply S (or T), that operand is taken to be zero,
while if more than one register is designated to supply S (or T), that operand is the
logical OR of the contents of these registers. Several registers may be specified as
result registers and, in this case, the result is placed in them all.

The A, B and M overflow indicators are not affected by this function, even if the A, B
or M registers are involved in arithmetic operations which generate results outside
the arithmetic range.

The following table shows the operand significance for function 25. Note that the
symbol | signifies logical OR and the pair ≡/ signifies Exclusive Or (ie Not Equivalent
To).

Bit Bit value Operand value Significance
0 & 1 0

1
2
3

0
1
2
3

-
S := S | A
S := S | M
S := S | W

2

0
1

0
4

-
S := S | B

3

0
1

0
8

-
T := T | B

4

0
1

0
16

-
A := R

5

0
1

0
32

-
B := R

6 to 8 0
1
2
3
4
5
6
7

0
64
128
192
256
320
384
448

R := T & S
R := T & (~S)
T := T | B R := T ≡/ S
R := T + S
R := T – S – 1
R := T – S
R := T + S + 1

9 0
1

0
512

-
S := S | P

10 0 0 -

21

1 1024 T := T | P
11 & 12 0

1
2
3

0
2048
4096
6144

-
T := T | A
T := T | M
T := T | W

13 0
1

0
8192

-
P := R

14 0
1

0
16384

-
M := R

15 0
1

0
32768

0
W := R

All fields are mutually independent and this allows the use of more than one register as both
source and destination.

Example 1:
If the initial operand is the literal 57, ie the binary pattern 00111001, then the effect is:
S := S | A, which is equivalent to S := A
T := T | B, which is equivalent to T := B
R := T & S, which is equivalent to R := A & B
A := R, which is equivalent to A := A & B
B := R, which is equivalent to B := A & B

Example 2:
If the initial operand is 18568, ie binary pattern 0100100010001000, then the effect
(assuming S and T are initially clear) is:

T := T | B then T := T | B R := T ≡/ S then T := T | A then M := R

T := T | BA | B
R := (A|B)=K>
M := R

The effect is to place A NOR B in register M.
The same effect could be achieved by the operand 16709,
i.e.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1
S : = A | B (4+1)
T := 0 (0)
R : = 0 - (A | B) - 1 (320)
M := R (16384)
N.B. -(AIB) = ~(A|B) + 1 so that —(A|B) - 1 = ~(A|B)

(For more information, see section 4.25, page 115 onwards, in Reference 3.1).

A3.1.3. Function 26, Conditional Skip (TEST).

This function provides comprehensive facilities for testing the arithmetic status of the A, B
and M registers, followed by a skip of some instructions if the test fails. The detailed
operation is specified by the individual fields within the function’s operand, which are

22

arranged so that the most commonly occurring combinations can be accommodated by a
literal. The operand defines:

 a set of arithmetic conditions to be tested;
 a register to be incremented after the test;
 a number of instructions to be skipped if none of the selected conditions is satisfied before
 incrementation.

The fields specifying the tests to be performed are interpreted independently and any
combination of tests may be used. The skip will be performed only if none of the tests is
satisfied before any register-incrementation. If no tests are specified, none can be satisfied;
therefore, in this case, the skip is always made. Any incrementation is performed regardless
of whether the skip is made or not; but no overflow indicator is set if the result of this addition
lies outside the arithmetic range.

This function may be used to test the A, B and M overflow indicators. If any of those
specified are set, then the condition is regarded as being satisfied and no skip is made. Any
indicator which is tested by this function is reset, but others will be left in their current
condition. This is the only method of resetting the overflow indicators without performing a
sub-program entry or exit. For special state programs, the M overflow indicator is replaced
by the interrupt rejection indicator.

The following table shows the operand significance for function 26.

Bits Bit-value Operand value Significance

0 & 1 0 0 -

 1 1 A := A + 1

 2 2 B := B + 1

 3 3 M := M + 1

2 0 0 -

 1 4 A < 0 ?

3 0 0 -

 1 8 A = 0 ?

4 0 0 -

 1 16 A > 0 ?

5 0 0 -

 1 32 B = 0 ?

6 0 0 -

 1 64 M = 0 ?

7 0 0 -

 1 128 M > 0 ?

8 0 0 -

23

 1 256 M < 0 ?

9 0 0 -

 1 512 B < 0 ?

10 0 0 -

 1 1024 B > 0 ?

11 & 12 0 0 P := P + 1

 1 2048 P := P + 2

 2 4096 P := P + 4

 3 6144 P := P + 8

13 0 0 -

 1 8192 Aovr = 1 ? Aovr := 0

14 0 0 -

 1 16384 Bovr = 1 ? Bovr := 0

15 0 0 -

 1 32768 Movr = 1 ? Movr := 0

Note that the incrementing of P is only dione if none of the tests is satisfied. All fields in the
operand are mutually independent. For example A = 0 and B = 0 can be tested together. The
skip in this case will not be made unless A and B are both non zero; if either is zero then the
instruction following the test is obeyed as normal. Note also that the three conditions ≠ 0, ≥ 0
or ≤ 0 may be tested by invoking two test indicators. Thus, the test A ≠ 0 is accomplished by
setting bits in the operand that specify both A < 0 and A > 0 within the same instruction.

The following example illustrates the use of the operand with the Function 26 instruction. If
the operand is the literal 59, ie 00111011, then the action is:
skip 1 instruction unless B = 0 or A > 0 and increment M by 1.

A3.1.4. Function 27. Interface control (used for inhibiting interrupts and hesitations).

The operand for Function 27 specifies the processor's response to interrupts and to
hesitations, and provides a means of setting the Interrupt Reject indicator. This function is
only valid while the processor is in special state. If it is issued while in normal state, it results
in an internal interrupt occurring to the context stored in locations 2,4 onwards, indicating an
invalid function.

The operand for function is treated as a literal, with the literal’s bits being interpreted as
follows (see next page).

24

Bit Value Operand Meaning
0 and 1 0

1
2
3

0
1
2
3

-
-
Set inhibit normal state interrupts status
Set allow normal state interrupts status

2 and 3 0
1
2
3

0
4
8
12

-
Set inhibit hesitations status until specia! state is left.
Set inhibit hesitations status
Set allow hesitations status

4 and 5 Any (Not used)
6 0

1
0
64

-
Set processor non-operational.

7 0
1

0
128

-
Set interrupt-specific reject indicator I rej := 1.

8 to 15 Any Not used. (Since these bits are invariably zero, it is always
possible to specify the operand as a literal.

Notes.
(a). The processor will always inhibit interrupts while in special state. If the processor is set
to inhibit interrupts, any incoming demand that is found to be an interrupt will be inhibited
with a special busy signal to the channel, which may in turn generate a rejection qualifier.
(b). If the processor is set to inhibit hesitations, any incoming demand that is found to be a
hesitation will be rejected with qualifier 4. If the processor is set to allow hesitations, any
incoming demand that is found to be a hesitation will be dealt with normally, regardless of
whether or not the processor is in normal state.
(c). The processor may set itself non-operational by executing a function 27 with Q6 = 1.
if the processor power supplies are turned off, or fail, then after a given period of time the
processor will be set non-operational, even if no function 27, with Q 6 = 1, has been
executed.

A3.1.5. Function 28: subroutine entry.
This function provides a conventional sub-routine entry facility. The more powerful sub-
program facilities of the Modular One are provided by the program linkage instructions
described in Appendix A1.6 and A1.7 below.

Function 28 places the current value of the Program Counter P into the B register and sets
the new value of P to be a value that depends upon the bits in the operand Q - as shown in
the Table below.

Value of operand Q Resulting action
213 > Q ≥ 0 B : = P

P : = Q
Q ≥ 213 B := P

P : = Q - m * 213

m is a positive non-zero integer such that
213 > Q - m * 213 ≥ 0

Q < 0 B : = P
P := Q + m * 213

m is a positive non-zero integer such that
213 > Q + m * 213 ≥ 0

25

A3.1.6. Function 29: program linkage type 1 (ENT).
This function operates differently in each of the two states:
 normal state: switch the working context & enter code at point specified by the operand, Q;
 special state: switch the relocation context.
The actions relate to the Modular One concepts of Segments and Context, as desribed in
sections 2.6 and 2.7 above.

Function 29 in normal state: sub-program entry.
In summary, the contents of the A , B, M and Overflow registers are exchanged with the
contents of words 1, 2, 3 and 4, respectively, of the local workspace (the Y segment) and the
new value of the program counter P is set to a value determined by the value of the Function
29’s operand.

The new value of P is as defined in the following Table.

Value of operand, Q New value of P
213 1 > Q ≥ 0 P := Q
Q ≥ 213 P := Q - m * 213

m is a positive non-zero integer such that
213 > Q - m * 213 ≥ 0

Q < 0 P := Q + m * 213
m is a positive non-zero integer such that
213 > Q + m * 213 ≥ 0

When the contents of the A , B, M and Overflow registers are exchanged with the contents of
words 1, 2, 3 and 4, respectively, of the local workspace (the Y segment), a check is made
to ensure that the four addresses do not point outside the Y segment bounds, or to a
peripheral. If one does, an error interrupt made to the context stored in locations 2,4 to 2,7
indicating an address violation.

Function 29 in special state: switch relocation contexts.
This function exchanges the contents of the W, X, Y and Z registers (the relocation context
of the current program) with the contents of four consecutive locations of store, as defined by
the function’s operand, Q, whien considered as a 16-bit positive address. In the following
explanation, [Q] denotes the initial contents of the store location pointed to by the Function
29’s operand. A prime ‘ is used to denote the new contents of a store location, or of a
register, after the Function 29 has been obeyed. The four consecutive store locations are
denoted by Q, Q+1, Q+2 and Q+3.

[Q]’ := W; W’ := [Q]
[Q+1]’ := X; X’ := [Q+1]
[Q+2]’ := Y Y’ := [Q+2]
[Q+3]’ := Z Z’ := [Q+3]

Function 29 is the only method of changing the settings of the X, Y and Z registers.

A3.1.7. Function 30: program linkage type 2 (EXECUTIVE CALL).
This function operates differently in each of the two states.

26

In normal state:
The effect is to exchange the contents of the P, A, B and M registers with the contents of the
first four locations of local workspace. In particular:
 If Q = 0, switch the working context and enter code as defined by the new P register value.
 This is equivalent ot a sub-program link within normal code.
 If 1 ≤ Q ≤ 255, switch the working context and enter special state code as defined by the
new P register value. This is equivalent to an Executive call.
 If Q is outside the range 0 -> 255 then cause an invalid instruction interrupt to the context
stored in locations 2,4 to 2,7.

In special state:
The effect is to exchange the contents of the P, A , B and M registers with the contents of
four consecutive locations of memory, as defined by the operand, Q. Normal state is then
entered. In particular:
 switch the working context and enter normal state code as defined by the new P register
value.

References for section 3.
3.1. Modular One functional specification: the 1.14 Processor. January 1974.

3.2. NAL fact sheet. CTL technical publication 382/17/4C. Issue 2, November 1976.

3.3. Programmers’ Handbook – draft 1.11: the Address Modes. P J Clark. Document
70/707/G, October 1970.

3.4. Modular One. 25-page glossy brochure with art-work. Publication date not given
but deduce it was 1971 or 1972.

The above are published by Computer Technology Limited, Eaton Road,
Hemel Hempstead, Hertfordshire, England.

27

4. Software.

4.1. The Executive and Operating Systems.
The smallest Modular One systems are designed to operate with an Executive
program, which contains facilities for the control of peripheral devices, for organising
and allocating storage and processing time, for inter-program communications, for
switching from one program to another and for dealing with the power on/off
interrupts and error conditions. The Executive also contains service routines,
accessible by software interrupts, which enhance the hardware facilities.

The X, Y and Z memory segmentation registers, together with the two execution
states (Normal State and the non-interruptible privileged Special State) mean that
the Executive can act as a self-protecting Operating System kernel.

As for full-blown Operating Systems, CTL provided MODUS 4 which gave “efficient
multi-programming, real-time response, program protection and many facilities
including Virtual Memory capability previously only associaterd with large processor
systems” [Reference 4.1]. MODUS 4 was modular and highly configurable, able to
be tailored to suit the needs of individual customers.

More details to come.

4.2. Programming languages and compilers.
At the lowest level, an Assembler called NAL is provided for the Modular One. There
are the usual range of text editors and debugging tools.

High-level compiles include CORAL, FORTRAN IV and BASIC. CTL provides a
range of area-specific software applications packages.

More details to come.

Reference for section 4.
4.1. Modular One. 25-page glossy brochure with art-work. Publication date not given
but deduce it was 1971 or 1972. Published by Computer Technology Limited, Eaton
Road, Hemel Hempstead, Hertfordshire, England.

